Разработка прецизионных средств измерений СВЧ мощности

А.И. Матвеев, А.В. Пивак, И.П. Чирков

ВНИИФТРИ

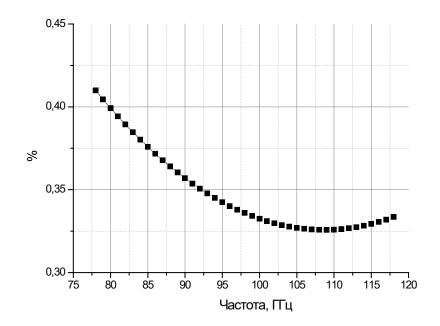
Аннотация: в данной работе проведен анализ метрологических задач, решаемых при разработке первичного эталона единицы мощности электромагнитных колебаний и высокоточных СВЧ ваттметров. Определены основные недостатки тепловых преобразователей мощности, предложены и опробованы методы уменьшения их влияния на погрешности средств измерений.

Ключевые слова: СВЧ ваттметр, преобразователь мощности, СВЧ термистор, МЭМС термопара.

1. Введение

Мощность электромагнитных колебаний является основным параметром, характеризующим интенсивность электромагнитного излучения на сверхвысоких частотах. С учетом многомиллионной стоимости ошибок вследствие недостоверности контроля энергетических параметров приемо-передающих модулей и систем на этапах их разработки и производства обеспечение единства измерений мощности СВЧ становится насущной задачей, сопровождаемой, зачастую, ужесточением требований к точности измерений

При разработке, испытаниях и настройке радиотехнических устройств и систем применяют большой парк средств измерений, имеющих нормируемые характеристики, выраженные в единицах мощности или отношении мощностей: ваттметры, генераторы сигналов, анализаторы спектра, сигналов, цепей. Точность измерений мощности в метрологических лабораториях ограничивается погрешностью СВЧ ваттметров, системой средств и методов воспроизведения и передачи единицы мощности СВЧ. В статье представлены результаты исследований и разработок ФГУП «ВНИИФТРИ» по данной теме в том числе для решения задач импортозамещения.


2. Прослеживаемость измерений мощности СВЧ

Мощность электромагнитных колебаний, распространяющихся в закрытых линиях передачи определяется как интеграл вектора Пойтинга в плоскости, перпендикулярной линии передачи. Воспроизведение единицы мощности электромагнитных колебаний с преобразованием её в тепловой вид энергии на сегодняшний день остается наиболее точным методом, применяемым во всех национальных метрологических лабораториях.

Принцип построения первичных эталонов ГЭТ 26 и ГЭТ 167 основан на преобразовании электромагнитной энергии в тепловой вид энергии, которая методом замещения сравнивается с мощностью постоянного тока. Для реализации этого принципа в составе первичного эталона применяются разработанные калориметрические преобразователи мощности, исследование которых осуществляется в специально разработанных и исследованных микрокалориметрах.

Выполненные за последние десять лет работы по модернизации ГЭТ 167 [1] позволили увеличить его верхнюю частоту вдвое, а в 2025 году планируется выполнить его аттестацию до 178,4 ГГц.

В ходе работ получены аналитические модели тепловых процессов в микрокалориметре, позволившие рассчитать оптимальные характеристики тепловых развязок, подтвердить теоретические выводы на практике. С учетом уточненных методов определения поправки (рис. 1), связанной с тепловыделением в теле тепловой развязки, эта систематическая составляющая уменьшена в 2 раза [2], а при этом чувствительность микрокалориметра сохранилась на уровне 1,2 мВ/мВт.

Рисунок 1. Пределы составляющей неисключенной систематической погрешности из-за потерь в тепловой развязке.

Разработанные калориметрические преобразователи мощности на основе монокристаллического кремния показали [3] превосходные характеристики:

- КСВН не более 1,2;
- изменение коэффициента эффективности не более 1 % в рабочей полосе частот;
- нелинейность для отобранных преобразователей не более 0,1 %;
- время измерений в микрокалориметре на одной частоте 15 минут, а на компарирующей установке не более 7 секунд.

Измерения зависимости коэффициента эффективности в микрокалориметре при двух уровнях мощности обеспечило возможность воспроизведения не только единицы мощности, но и шкалы отношения мощностей в диапазоне от 0 до 10 дБ.

После измерений в микрокалориметре коэффициента эффективности единица мощности может передаваться рабочим эталонам и средствам измерений при помощи компарирующей установки, которая состоит из компараторов на каждое сечение волноводного тракта в автоматизированном режиме.

3. Тепловые СВЧ ваттметры

Термистор. Точные измерения мощности ВЧ и СВЧ колебаний выполняют ваттметрами в диапазоне частот от 30 МГц до 178 ГГц с разделением на поддиапазоны частот применяемых линий передачи. В диапазоне частот до 20 ГГц применяется в основном коаксиальные ваттметры, а на частотах выше — волноводные, что связано с увеличением потерь и коэффициентов отражения в коаксиальных линиях (рис 2).

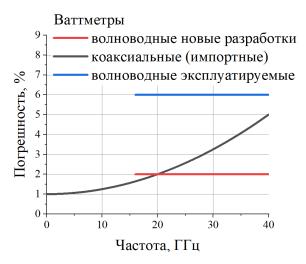
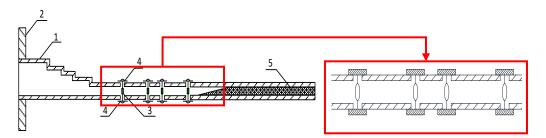



Рисунок 2. Типовые погрешности коаксиальных волноводных ваттметров

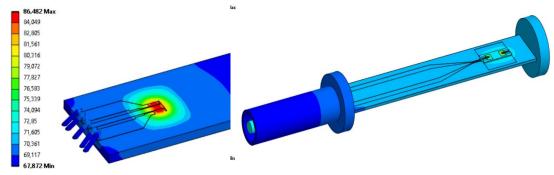
ФГУП «ВНИИФТРИ» разработаны чувствительные к мощности СВЧ колебаний элементы в виде термисторов на основе оксидов переходных металлов, у которых не полностью заполнена 3d-электронная оболочка, из-за чего обмен электронами между соседними ионами затрудняется, и электропроводность вещества становится малой. Если температура увеличивается, то электроны приобретают дополнительную тепловую энергию, процесс обмена электронами становится интенсивнее и поэтому резко увеличивается подвижность носителей заряда и снижается сопротивление. Оксидные терморезисторы имеют малые габариты, а значит, малую тепловую инерцию.

Предложено техническое решение для волноводных преобразователей СВЧ мощности на основе комбинации секции термисторных чувствительных элементов и согласованной нагрузки (рис. 3), что обеспечивает значительное снижение модуля коэффициента отражения до 0,07 без применения дополнительных устройств согласования.

1 — Волноводный канал; 2 — фланцевый соединитель; 3 — СВЧ термистор; 4 — электрическая ёмкость; 5 — согласованная нагрузка

Рисунок 3. Схема многозондового ваттметра оконечного типа

Разработаны термисторные мосты, реализующие измерения мощности постоянного тока с рабочими сопротивлениями термисторов от 100 до 2000 Ом. Сопротивления термисторов изменяется в автоматическом режиме. В совокупности это позволило разработать серию новых термисторных СВЧ ваттметров с многозондовыми преобразователями М3-122 и М1-37. Они могут применяться и для передачи единицы мощности от первичного эталона рабочим эталонам.


Болометр. Успехи при разработке калориметрических преобразователей предложено перенести на разработку серийных волноводных ваттметров в миллиметровом диапазоне длин волн. Выполнено электромагнитное моделирование

вариантов изготовления серийных преобразователей мощности и экспериментальное макетирований выбранных вариантов. В ходе изготовления макетов разработана технологическая маршрутная карта получения кремниевых чипов с низкоомными контактами. Уменьшение площади контактных площадок на чипах, связанное с уменьшением геометрических размеров волноводов в диапазоне частот 110-170 ГГц, привело к значительному росту тепловых шумов сопротивления болометров. Уменьшить влияние контактов удалось за счет оригинальной конструкции болометра с увеличенной площадью контактных площадок.

Разработанная система дискретного замещения, связанная с применением цифровых методов регулирования мощности замещения, позволила обеспечить низкий уровень шума и высокую точность.

Термопара косвенного подогрева. Перспективной в настоящее время является разработка коаксиальных ваттметров на основе МЭМС. Компактные размеры преобразователей и высокая чувствительность к изменению температуры теоретически позволяют создавать сверхширокополосные преобразователи мощности с диапазоном рабочих частот от 0 Гц до сотен ГГц. В настоящее время разработана конструкция макета преобразователя на основе копланарной линии передачи, совмещающей СВЧ нагрузку и МЭМС преобразователь в едином кристалле.

Моделирование тепловых процессов показало (рис. 4), что при толщине мембраны 10 мкм тепловое равновесие (разность между горячим и холодным спаем термопары) устанавливается через 50 мкс, при этом продолжительный нагрев увеличивает температуру чипа в целом. При выделении 100 мВт мощности в СВЧ резисторе ожидаемая разность температур составляет 12 °C.

Рисунок 4. Распеределение температуры в модели кремниевого кристалла с МЭМС структурой и в модели коаксиального преобразователя мощности.

В конструкции кристалла предусмотрена симметричная схема СВЧ поглотителей и термопар. При этом к СВЧ разъему подключается только одна СВЧ нагрузка, а вторая служит для реализации опорного канала. Так как напряжение на выходе термопар опорного канала зависит только от температуры, то разность напряжений на выходе термопар опорного и рабочего канала прямо пропорциональна измеряемой СВЧ мощности.

Датчик температуры мембраны, детектирующий нагрев СВЧ резисторов, должен иметь высокую разрешающую способность в диапазоне рабочих температур. Наиболее подходящими являются термопары, термоЭДС которых пропорционально разности температур. При этом КМОП (комплементарная структура металл — оксид — полупроводник) технологии позволяют производить поликремнёвые термопары, обладающие значением коэффициента Зеенбека на порядок большим чем у термопар на основе пар металлов. Макет кристалла (рис. 5) с СВЧ структурой и термопарами имеет геометрические размеры 2×3 мм.

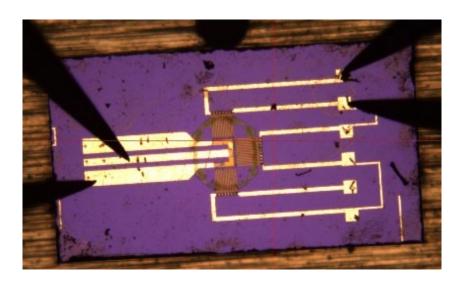


Рисунок 5. Макет МЭМС датчика СВЧ мощности

Разработанная конструкция преобразователей мощности имеет ряд особенностей, позволяющей достичь необходимых технических характеристик и при этом обеспечить их повторяемость при серийном производстве за счет применения стандартизованных, отработанных технологических КМОП процессов при изготовлении кристалла.

3. Заключение

Формируется единая система метрологической прослеживаемости измерений мощности электромагнитных колебаний на основе теоретически обоснованной научно-методической базы по разработке эталонов, средств измерений и создании на её основе методически соединенных первичного эталона и ваттметров. В перспективе ближайших лет на основе отечественных средств измерений сформируется парк прецизионных коаксиальных и волноводных ваттметров в диапазоне частот от 10 МГц до 178,4 ГГц.

Список литературы

- 1. Коудельный А.В., Малай И.М., Матвеев А.И., Перепелкин В.А., Чирков И.П.. Государственный первичный эталон единицы мощности электромагнитных колебаний в диапазоне частот 37,5–118,1 ГГц ГЭТ 167-2021 // Измерительная техника. –2022. –№ 6. –С. 3-8
- 2. Коудельный А.В., Малай И.М., Матвеев А.И., Перепелкин В.А., Чирков И.П. Разработка комплекса аппаратуры для измерения мощности электромагнитных колебаний высшей точности в диапазоне частот от 78,33 до 118,10 ГГц // Альманах современной метрологии. 2021. № 2 (26). С. 25-36
- 3. В.А. Перепелкин, И.П. Чирков, А.И. Матвеев «Исследование волноводных прецизионных термоэлектрических преобразователей мощности миллиметрового диапазона длин волн»//«Альманах современной метрологии» № 2 (26) 2021, стр. 37–44