УДК 621.372.413

Микроволновые устройства на нерегулярных линиях

Е.А. Болдырев, А.А. Макаров, Э.Ю. Седышев, С.И. Федоров

Санкт-Петербургский государственный университет телекоммуникаций им. проф. М. А. Бонч-Бруевича

Аннотация: в данной работе предлагается первичная классификация микроволновых устройств на нерегулярных линиях без связи и со связью. Предпринята попытка обозначить сферы применения тех или иных видов нерегулярных линий (в том числе и связанных). В работе представлены результаты макетирования и экспериментальных исследований.

Ключевые слова: микроволновая электроника, СВЧ, микроволновые линии, связанные линии, устройства частотной селекции, излучатели с нерегулярными «плечами»

1. Введение

Нерегулярные микроволновые линии нашли широкое применение в радиоэлектронике, они являются основными элементами делителей мощности, направленных ответвителей, мостовых схем, устройств частотной селекции и согласования.

Многочисленные работы, посвященные данной тематике, в основном изданы периодическими изданиями. Как правило, это публикации по отдельным устройствам на различных типах нерегулярных линий. Классификация микроволновых устройств по типу применяемых линий и типов связей на данный момент отсутствует.

2. Систематизация НПЛ и экспериментальные результаты

Для начала рассмотрим основные типы нерегулярных линий, которые используются в микроволновой электронике.

Можно выделить два основных класса нерегулярных микроволновых линий. К первому классу отнесем нерегулярные линии со скачкообразным изменением волнового сопротивления, этот класс использует интерференцию волны. В таких устройствах одновременно существуют как бегущие, так и стоячие волны (смешанная волна). Вторым классом НПЛ может быть класс с плавным изменением волнового сопротивления, эти линии также работают со смешанной волной, хотя уровень согласования у них во много раз выше, чем у предыдущих. В этих устройствах преобладает бегущая волна. Микроволновые устройства, которые включают в себя скачкообразное и плавное изменение волновых сопротивлений, сегодня практически неизвестны.

Стоит отметить, что в литературе хорошо известны различные инженерные методики расчета волновых сопротивлений [1,3,4].

Следующие формулы позволяют рассчитать волновое сопротивление классических полосовых линий при различных отношениях $\frac{w}{h}$.

При
$$\frac{w}{h} \leq 1$$

$$Z_{\rm B} = \frac{120}{\sqrt{2(\varepsilon_r + 1)}} \cdot \left\{ \ln\left(\frac{8h}{w}\right) + \frac{w^2}{(32h^2)} - \frac{\frac{1}{2}(\varepsilon_r - 1)\left[\ln\left(\frac{\pi}{2}\right) + \frac{\ln\left(\frac{4}{\pi}\right)}{\varepsilon_r}\right]}{\varepsilon_r + 1} \right\},\tag{1}$$

а при $\frac{w}{h} > 1$

$$Z_{\rm B} = \left(\frac{60\pi}{\sqrt{\varepsilon_r}}\right) \cdot \left[\frac{w}{2h} + 0.441 + \frac{0.082(\varepsilon_r + 1)}{\varepsilon_r^2} + (\varepsilon_r + 1) \cdot A(2\pi\varepsilon_r)\right]^{-1},\tag{2}$$

где

$$A = 1,451 + \ln\left(\frac{\omega}{2h} + 0.94\right),\tag{3}$$

Если полосковые линии располагаются рядом и обладают связью, то вводится понятие связанных линий. В этих линиях могут существовать две моды: чётная и нечётная [2].

Считаем, что для четной моды:

$$\left(\frac{w}{h}\right)_{p} = \frac{2}{\pi} \cdot \operatorname{arch} \frac{2H - g + 1}{g + 1},\tag{4}$$

Для нечётной моды используем два приближения с учетом ε_r . При $\varepsilon_r \leq 6$

$$\left(\frac{w}{h}\right)_o = \frac{2}{\pi} \cdot \operatorname{arch} \frac{2H - g - 1}{g - 1} + \frac{\frac{4}{\pi}}{1 + \frac{\varepsilon_r}{2}} \cdot \operatorname{arch}(1 + 2\frac{w}{s}),\tag{5}$$

а при $\varepsilon_r \ge 6$

$$\left(\frac{w}{h}\right)_{a} = \frac{2}{\pi} \cdot \operatorname{arch} \frac{2H - g - 1}{g - 1} + \frac{1}{\pi} \cdot \operatorname{arch} \left(1 + 2\frac{w}{h}\right),\tag{6}$$

где

$$g = ch\left(\frac{s}{2h}\right), \ H = ch\left(\frac{\pi\omega}{h} + \frac{\pi s}{h}\right)$$
 (7,8)

Порядок расчета $Z_{\mathbb{B}e}$ и $Z_{\mathbb{B}o}$ следующий: зная w,h,s по формулам 7 и 8 вычисляем g и H, затем с учетом ε_r находим $\left(\frac{w}{h}\right)_e$ и $\left(\frac{w}{h}\right)_o$ по формулам 4-6. Зная $g,H,\left(\frac{w}{h}\right)_e$ и $\left(\frac{w}{h}\right)_o$ по формулам 1-3 определяем $Z_{\mathbb{B}e}$ и $Z_{\mathbb{B}o}$.

Отметим, что при уменьшении зазора s, погрешность расчета резко возрастает, а

наиболее точный результат мы получаем при $s/w \to 1$. Погрешность расчета по данным формулам при сильной связи достигает десяти процентов, что делает точный расчет связанных линий практически невозможным.

Рассмотрим некоторые виды [5] связей, указанные в таблице 1.

Таблица 1. Регулярные связи на различных линиях

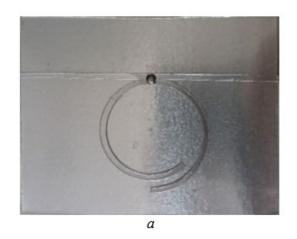
	Прямоугольная линия	Трапециевидная линия	Волнообразная линия	Ступенчатая линия
Прямоугольная линия	Линии регулярны		Регулярная связь невозможна из-за формы линий	Регулярная связь невозможна из-за формы линий
Трапециевидная линия			Регулярная связь невозможна из-за формы линий	Регулярная связь невозможна из-за формы линий
Волнообразная линия	Регулярная связь невозможна из-за формы линий	Регулярная связь невозможна из-за формы линий		Регулярная связь невозможна из-за формы линий
Ступенчатая линия	Регулярная связь невозможна из-за формы линий	Регулярная связь невозможна из-за формы линий	Регулярная связь невозможна из-за формы линий	

Регулярные связи довольно широко применяются в устройствах микроволновой электроники. Связанные линии находят широкое применение в узкополосных микроволновых фильтрах, которые широко представлены на рынке, а методики их синтеза известны более 60 лет.

Заметим, что все устройства на нерегулярных линиях без связи и со связью носят эксклюзивный характер, общие методики синтеза для них отсутствуют. Связь между планарными линиями также можно подразделить на два основных типа. В таблице 2 к первому классу отнесем регулярную связь, а второй класс объединит всевозможные виды нерегулярных связей.

Таблица 2. Виды связи регулярных и нерегулярных линий

Связь первого класса	Связь второго класса	
Регулярная связь	Нерегулярная связь	
	• Периодическая	


•	Симметричная
•	Полиномиальная

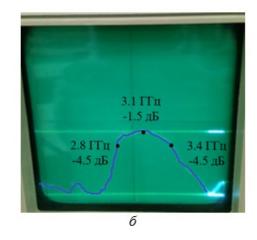

В таблице 3 представлены некоторые из перечисленных видов связи.

Таблица 3. Различные виды связи на регулярных и нерегулярных линиях

Вид связи	Пример	
Регулярная связь на регулярной линии		
Регулярная связь на нерегулярной линии		
Нерегулярная связь на регулярной линии		
Нерегулярная связь на нерегулярной линии		
Периодическая связь		

Для того, чтобы понять целесообразность использования нерегулярностей в СВЧ-устройствах, был проведен ряд исследований с полосно-пропускающими фильтрами на регулярных и нерегулярных линиях с различными видами связи. Рассмотрим макет «резонатор типа дуга», представляющий собой регулярную линию с регулярной связью (рисунок 1).

Рисунок 1. Макет шлейфного резонатора типа «дуга» с регулярной связью — а, экспериментальная $A \ YX - \delta$

Отметим, что полученные результаты моделирования фильтра в САПР RFSimm99 близки к экспериментальным характеристикам макета. Результаты проведенных

исследований позволяют сделать вывод, что применение *нерегулярностей* приводит к расширению рабочей полосы пропускания и смещению всех частот устройства.

Интерес к нерегулярным линиям отражен в статьях зарубежных и отечественных авторов. Все чаще возникают идеи создания систем описания связанных линий. Очевидно, что при наличии периодических изменений волнового сопротивления одиночной линии в ее структуре возникают участки с емкостными и индуктивными параметрами, что отражается на частотно-селективных свойствах структуры в целом.

Группе синтеза СВЧ устройств Санкт-Петербургского государственного университета Телекоммуникаций удалось синтезировать целую серию устройств частотной селекции на нерегулярных линиях без связи и со связью.

На рисунке 2 представлен режекторный фильтр S-диапазона на одном нерегулярном шлейфе, сразу же отметим, что такие шлейфы очень часто используются для блокировки прохождения СВЧ сигнала в тракт питания, однако устройства частотной селекции на них конструируются редко.

Особенность данного устройства в том, что полоса пропускания у такого изделия крайне неравномерная, так как такой «шлейф» представляет собой довольно сложный элемент с точки зрения электродинамики.

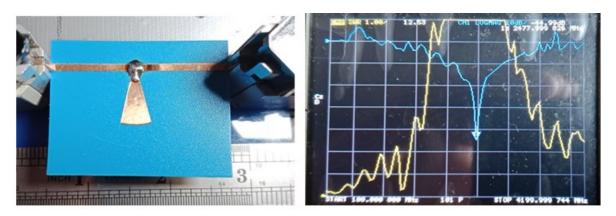


Рисунок 2. Внешний вид режекторного фильтра на нерегулярном шлейфе и его АЧХ

При синтезе устройств частотной селекции на связанных неоднородных линиях в Лаборатории синтеза СВЧ-устройств был получен довольно серьезный результат при создании $\Pi\Pi\Phi$. Данное устройство обладает научной новизной и синтезировано впервые.

Устройство получилось весьма компактным и с возможностью подстройки. Сразу же оговоримся, что формализация данного устройства с помощью классических методов теории фильтрации практически невозможна.

Далее на рисунке 3 представлен фильтр на связанных нерегулярных линиях, а на рисунке 4 – AЧX данного устройства.

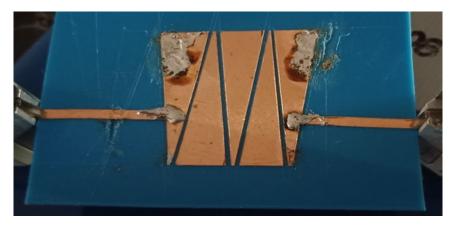


Рисунок 3. Фильтр на связанных нерегулярных линиях

Особое значение при синтезе данного фильтра имеет точка включения линий питания, при включении линий питания в точках низкого волнового сопротивления характеристика фильтра меняется. При этом основной блок фильтра представляет собой набор резонаторов с несколькими устойчивыми состояниями.

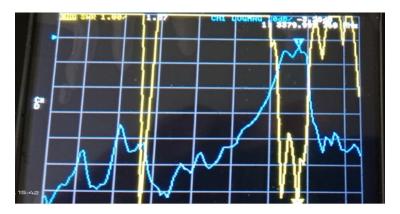
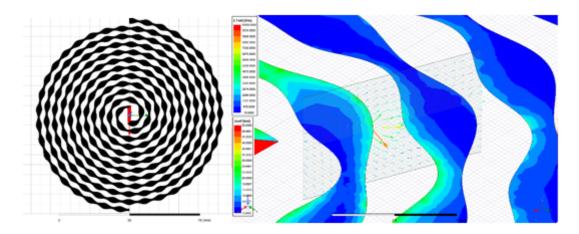
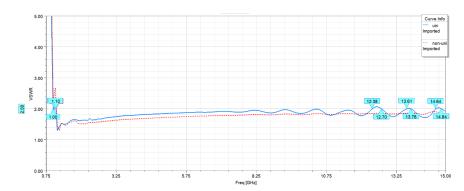
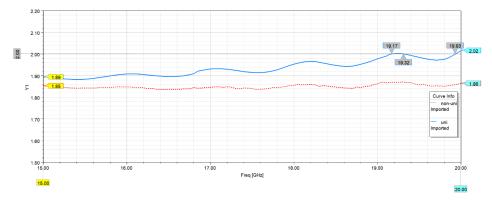



Рисунок 4. АЧХ фильтра на связанных нерегулярных линиях

Необходимо заметить, что лестничные фильтры на связанных регулярных линиях имеют довольно узкие полосы пропускания [6,7], в то время как фильтры на связанных нерегулярных линиях дают полосы пропускания порядка 50% без потери максимального ослабления вне полосы пропускания. Анализ данных структур в электродинамических пакетах подтверждает их частотно-селективную природу.


Перспективной областью применения нерегулярных линий, авторы считают область интегрированных микроволновых излучателей. Использование нерегулярных линий передачи для согласования широко представлено в инженерной литературе. Основной пример использования подобного типа линий можно найти, обратившись к четвертьволновому трансформатору на нерегулярной линии с плавным изменением волнового сопротивления [8,9,10]. Нерегулярные линии с несколькими периодами изменения волнового сопротивления показали возможность расширения рабочей полосы некоторых узкополосных антенн.

Одной из решаемых задач стало исследование неоднородностей, введённых в проводящие плечи плоской спиральной антенны Архимеда.


Рисунок 5. Модель спиральной антенны с распределением токов и поля в сечении соответствующем активной зоне расчётной частоты

По сути проводящие плечи спиральной антенны ввиду непропорционального изменения ширины соседних полосков представляют собой неоднородно связанные нерегулярные линии [11]. В данном случае классическое описание спиральной антенны Архимеда и рассмотрение её как некоторого аналога щелевой или компланарной линии затрудняется.

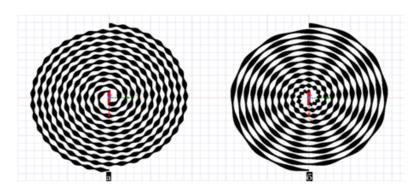


Рисунок 6. Сравнение КСВН (1-15ГГц) антенн с постоянной длиной неоднородности (пунктир) и однородной спирали (сплошная линия)

Моделирование проводилось в двух диапазонах 1-15 $\Gamma\Gamma$ ц (с высокой точностью (и 15-20 $\Gamma\Gamma$ ц (с более низкой точностью моделирования ввиду ограниченности вычислительной мощности). Рассчитанный рабочий диапазон спиральной антенны без неоднородностей составлял порядка 1...20 $\Gamma\Gamma$ ц.

Рисунок 7. Сравнение КСВН (15-20 $\Gamma\Gamma$ ц) антенн с постоянной длиной неоднородности (пунктир) и однородной спирали (сплошная линия)

Рисунок 8. Модели спиральных антенн без учета частотных свойств структуры (a) и с изменением геометрии нерегулярностей, учитывающих частотные свойства структуры (б).

В результате компьютерного моделирования стал очевидным тот факт, что введение неоднородности в спиральную антенну приводит к расширению рабочего диапазона по уровню КСВН. Этим доказывается целесообразность использования нерегулярных линий в микроволновых излучателях.

Также становится очевидным, что каждый частотный сегмент требует своей геометрии. В случае спиральных излучателей это приводит к тому, что витки спирали должны иметь различные размеры нерегулярностей.

3. Заключение

Обобщая результаты работы в целом, можно подчеркнуть, что перед авторами открывается огромный пласт научно-исследовательских изысканий.

Список литературы

- 1. Вольман В.И. Справочник по расчету и конструированию СВЧ полосковых устройств / Под ред. В.И. Вольмана. М.: Радио и связь. 1982.
- 2. Cohu S.B. Characteristic impedance of broadside coupled strip transmission Lines. \ IEEE Trans., 1960, v. MTT-8, N=11, p. 633-637.
- 3. Боброва К. В., Булатова И. А., Иванова Е. А., Седышев Э. Ю. Расчёт модифицированных линий передач для объёмных интегральных схем СВЧ. СПб.: Санкт-Петербургский государственный электротехнический университет «ЛЭТИ» им. В. И. Ульянова (Ленина), 2015. С. 161–170.
- 4. Гупта К., Гардж Р., Чадха Р. Машинное проектирование СВЧ устройств. М.: Радио и связь, 1987.
- 5. Гвоздев В. И., Нефедов Е. И. Объемные интегральные схемы СВЧ. М.: Наука, 1985.
- 6. Фальковский О.И. Техническая электродинамика: Учебник. 2-е изд., стер. СПБ.: Издательство "Лань", 2009.
- 7. Зааль Р. Справочник по расчету фильтров: Пер. с нем. / Под ред. Н.Н. Слепова. М.: «Советское радио», 1983.
- 8. Баскаков С. И. Электродинамика и распространение радиоволн: Учеб. пособие для вузов по спец. «Радиотехника» М.: Высш. Шк., 1992.
- 9. Мазепова О.И., Мещанов В.П., Прохорова Н.И., Фельдштейн А.Л., Явич Л.Р. Справочник по элементам полосковой техники. М.: Связь, 1979.
- 10. Баскаков, С. И. Радиотехнические цепи с распределенными параметрами : учебное пособие для студентов радиотехнических специальностей вузов / С. И. Баскаков ; С. И. Баскаков. Изд. 2-е. Москва : URSS, 2011. (Классика инженерной мысли: радиотехника). ISBN 978-5-397-02265-1.
- 11. Farahani, Maryam & Mohammad-Ali-Nezhad, Sajad. (2020). A novel UWB printed monopole MIMO antenna with non-uniform transmission line using nonlinear model predictive. Engineering Science and Technology, an International Journal. 23. 10.1016/j.jestch.2020.05.006.