# УДК 621.396.67

# Исследование влияния КПРР на характеристики фрактальной антенны с интегрированным в подложку волноводом

#### Ю.С. Тихонов, А.Ю. Мирошниченко, Н.А. Акафьева, А.Д. Исаев

Саратовский государственный технический университет им. Ю.А. Гагарина

Аннотация: представлены результаты исследования влияния кольцевых планарных разрезных резонаторов (КПРР) на фрактальные антенны с интегрированным в подложку волноводом. Проведён расчёт основных электродинамических параметров антенн. Показана возможность влияния на частотный диапазон антенн с помощью изменения угла поворота КПРР и внутренних радиусов КПРР. Данный тип антенн может найти применение в различных телекоммуникационных приложениях.

**Ключевые слова:** фрактальная антенна, КПРР, SIW, КСВН, интегрированный в подложку волновод. метаматериал

#### 1. Введение

Из-за быстрого развития телекоммуникационной техники возникает потребность в разработке и исследовании новых типов антенн с хорошими электродинамическими параметрами, малыми габаритами и массой для разных сфер применения [1]. Развитие антенной техники привело к появлению фрактальных антенн. Данные антенн при малых габаритных размерах имеют определённые преимущества, например широкая полоса пропускания, многочастотность, что крайне необходимо в различных системах беспроводной связи [2-3]. Развитие пассивных СВЧ-устройств привело к появлению интегрированных в подложку волноводов (SIW), что позволяет улучшить электродинамические параметры пассивных СВЧ-устройств [4, 5]. Ранее было доложено о применении SIW во фрактальных антеннах [6, 7]. Было отмечено, что при добавлении стержней происходит улучшение КСВН, а также при определённых условиях изменение частоты.

Наряду с этим в последнее время появляется все больше статей, посвященных новому направлению исследований - метаматериалам [8]. Данное направление нашло применение в пассивных СВЧ-устройствах, в приборах вакуумной электроники [9-14]. Это уникальные искусственные структуры, не имеющие аналогов в природе, которые модифицируют диэлектрическую и магнитную проницаемости объектов, которые принимают отрицательные значения. Одним из самых популярных элементов, составляющих метаматериал, являются кольцевые планарные разрезные резонаторы (КПРР). Они находят применение в конструкциях планарных антенн [14].

Целью данной работы являлось оценить влияние КПРР и его угла поворота, размещенного на ранее исследуемой фрактальной антенне с SIW [6, 7], на частотный спектр и электродинамические параметры. Для расчета электродинамических параметров антенн использовался метод конечных элементов (МКЭ), реализованный в частотной области.

# 2. Конструкция исследуемой антенны

Конструкция исследуемой фрактальной антенны с SIW и КПРР приведена на рисунке 1. Она состоит из двухсторонней подложки 1, микрополосковой линии 2, конического перехода 3, патча в виде фрактала «Ковёр Серпинского I итерации» 4,

элементов интегрированного в подложку волновода 5, экрана 6 и КПРР элемента 7. Питание антенны производится через микрополосковую линию 2 и конический переход 3, которые в свою очередь образуют переход от квази-ТЕМ моды к ТЕ-моде. Патч 4 электрически соединён с экраном 6 при помощи интегрированного в подложку волновода 5, который выполнен из металлизированных стержней с диаметром стержней d=1 мм и межцентровым расстоянием между стержнями p=2 мм. КПРР элемент расположен с обратной стороны подложки 1. Основные размеры антенны приведены в таблице 1. Геометрические размеры антенны рассчитывались по методике [6].



Рисунок 1. Конструкция фрактальной антенны с SIW и КПРР.

| Параметр                         | Значение | Параметр         | Значение  |  |
|----------------------------------|----------|------------------|-----------|--|
| Подложка                         | FR-4     | L                | 5 мм      |  |
| Диэлектрическая<br>проницаемость | 4.4      | L <sub>tap</sub> | 10 мм     |  |
| Толщина подложки                 | 1,5 мм   | R1               | (89) мм   |  |
| А                                | 90 мм    | R2               | 10 мм     |  |
| В                                | 60 мм    | R3               | (1415) мм |  |
| С                                | 30 мм    | R4               | 16 мм     |  |
| W                                | 5 мм     | g                | (12) мм   |  |
| W <sub>tap</sub>                 | 14 мм    | g1               | 2,5 мм    |  |

Таблица 1. Геометрические размеры фрактальной антенны

# 3. Результаты исследования антенны

Было проведено теоретическое исследование влияния КПРР его и угла поворота на электродинамические параметры фрактальной антенны с интегрированным в подложку волноводом. На рисунке 2 представлены конструкции антенн: без КПРР; с КПРР, расположенным под углом  $\alpha=0^\circ$ ; с КПРР, расположенным под углом  $\alpha=90^\circ$  и с КПРР, расположенным под углом  $\alpha=180^\circ$ . Расчёты проводились в частотном диапазоне от 0,5 до 5 ГГц, результаты расчёта приведены на рисунках 3-4 и в таблице 2.



**Рисунок 2.** Вид исследуемых моделей антенн со стороны подложки: а - без КПРР; б - с КПРР, расположенным под углом  $\alpha=0^{\circ}$ ; в - с КПРР, расположенным под углом  $\alpha=90^{\circ}$ ; г - с КПРР, расположенным под углом  $\alpha=180^{\circ}$ .

| Фрактальная          | Резонансная частота, | Обратные потери | ИСДИ |
|----------------------|----------------------|-----------------|------|
| антенна              | ГГц                  | S11 , дБ        | ксвп |
| Без КПРР             | 2,01                 | 19,22           | 1,24 |
|                      | 2,46                 | 12,43           | 1,62 |
|                      | 3,47                 | 16,83           | 1,33 |
|                      | 4,34                 | 13.68           | 1,54 |
| С КПРР, α=0° и g=1   | 2,3                  | 32,98           | 1,04 |
|                      | 2,48                 | 8,89            | 2,12 |
|                      | 2,7                  | 24,49           | 1,12 |
|                      | 3,46                 | 23,55           | 1,14 |
|                      | 4,14                 | 32,05           | 1,05 |
|                      | 4,32                 | 30,80           | 1,05 |
| С КПРР, α=0° и g=1   | 2,35                 | 14,17           | 1,48 |
|                      | 2,51                 | 13,40           | 1,51 |
|                      | 2,7                  | 30,85           | 1,05 |
|                      | 3,49                 | 20,71           | 1,2  |
|                      | 4,14                 | 28,34           | 1,07 |
|                      | 4,31                 | 28,19           | 1,08 |
| С КПРР, α=90° и g=1  | 2,97                 | 11,43           | 1,73 |
|                      | 3,46                 | 22,23           | 1,16 |
|                      | 4,07                 | 13,04           | 1,57 |
|                      | 4,60                 | 11,15           | 1,76 |
| С КПРР, α=180° и g=1 | 2,3                  | 31,97           | 1,05 |
|                      | 2,48                 | 8,9             | 2,11 |
|                      | 2,7                  | 25,24           | 1,11 |
|                      | 3,46                 | 23,54           | 1,14 |
|                      | 4,14                 | 27,15           | 1,09 |
|                      | 4,32                 | 33,14           | 1,04 |

Таблица 2. Результаты расчёта антенн

Из представленных результатов (рисунок 3) видно, что, КПРР оказывает существенное влияние на частотные характеристики антенны. Во-первых, при добавлении в конструкцию антенны КПРР появляются новые резонансные частоты и происходит сдвиг первого и второго резонанса вверх по диапазону на 250-300 МГц. Во-вторых, при изменении угла поворота с  $\alpha=0^{\circ}$  на  $\alpha=90^{\circ}$  происходит подавление резонансных частот до 3 ГГц, имеющиеся частоты в данном диапазоне имеют плохое КСВН и происходит уменьшение общего количества резонансов до четырёх. При этом при изменении угла поворота с  $\alpha=0^{\circ}$  на  $\alpha=180^{\circ}$  имеются незначительные изменения КСВН. На рисунке 4 приведены результаты исследования изменения внутренних радиусов «R<sub>1</sub>», «R<sub>3</sub>» и, как следствие, зазора «g» на частотные характеристики

антенны. Видно, что особое влияние изменение внутренних радиусов оказывает на первый резонанс ухудшая обратные потери |S<sub>11</sub>| в 2,3 раза, при этом происходит улучшение обратных потерь |S<sub>11</sub>| второго и третьего резонанса в 1,5 раза и 1,25 раза. На остальных частотах изменения электродинамических параметров не существенное.



Рисунок 3. Зависимость обратных потерь |S11| от частоты при изменении угла поворота.



Рисунок 4. Зависимость обратных потерь |S<sub>11</sub>| от частоты при изменении параметра «g».

На рисунке 5 представлены диаграммы направленности фрактальных антенн с КПРР углом поворота α=0° на α=90° для частоты 3,46 ГГц. Видно, что при изменении угла поворота изменяется и однородность диаграммы, появляются выраженные лепестки и диаграмма приобретает форму близкой к форме «бабочки».



**Рисунок 5.** Диаграмма направленности на частоте 3,46 ГГц: а - с КПРР, расположенным под углом  $\alpha=0^\circ$ ; б - с КПРР, расположенным под углом  $\alpha=90^\circ$ .

### 4. Заключение

Исследовано влияние КПРР с разным углом поворота и разными внутренними радиусами R<sub>1</sub>, R<sub>3</sub> на электродинамические параметры антенн. С помощью трехмерного моделирования проведено изучение основных электродинамических параметров в диапазоне до 5 ГГц. Антенна в исследуемом диапазоне обладает многочастотностью. Отмечено влияние угла поворота и внутренних радиусов КПРР на частотный диапазон, что заключалось в изменениях электродинамических параметров антенн. Исследованы диаграммы направленности антенн. Данный тип антенн может найти применение в различных телекоммуникационных приложениях.

#### Список литературы

- Oraizi H., Hedayati S. Miniaturization of microstrip antennas by the novel application of the Giuseppe Peano fractal geometries // IEEE Transactions on Antennas and Propagation. – 2012. – T. 60. – №. 8. – C. 3559-3567.
- 2. Yu Z. et al. A novel Koch and Sierpinski combined fractal antenna for 2G/3G/4G/5G/WLAN/navigation applications // Microwave and Optical Technology Letters. 2017. T. 59. №. 9. C. 2147-2155.
- 3. Gupta M., Mathur V. Wheel shaped modified fractal antenna realization for wireless communications //AEU-International Journal of Electronics and Communications. – 2017. – T. 79. – C. 257-266.
- 4. Wu K., Deslandes D., Cassivi Y. The substrate integrated circuits-a new concept for high-frequency electronics and optoelectronics // 6th International Conference on Telecommunications in Modern Satellite, Cable and Broadcasting Service, 2003. TELSIKS 2003. IEEE, 2003. T. 1. C. P-III.
- Rayas-Sanchez J. E., Gutierrez-Ayala V. A general EM-based design procedure for single-layer substrate integrated waveguide interconnects with microstrip transitions //2008 IEEE MTT-S International Microwave Symposium Digest. – IEEE, 2008. – C. 983-986.
- 6. Тихонов Ю. С. и др. Исследование планарных фрактальных антенн «ковер Серпинского», выполненных по SIW технологии // Сб. докл. XII Всероссийской научно-технической конференции «Электроника и микроэлектроника СВЧ». –Санкт-Петербург: СПбГЭТУ «ЛЭТИ. 2023. С. 454-458.
- Tikhonov Y. et al. Theoretical and Experimental Research of Fractal Antennas Designed by SIW-Technology // 2024 International Conference on Actual Problems of Electron Devices Engineering (APEDE). – IEEE, 2024. – T. 1. – C. 65-68.
- 8. Вендик И. Б., Вендик О. Г. Метаматериалы и их применение в технике сверхвысоких частот (Обзор) //Журнал технической физики. 2013. Т. 83. №. 1. С. 3-28.
- Галдецкий А. В., Голованов Н. А. Многолучевые клистроны с радиальным расположением лучей // Электроника и микроэлектроника СВЧ: материалы Всерос. науч.-техн. конф. –СПб. – 2023. – С. 4-9.
- Тихонов Ю. С. и др. Двухзазорный многолучевой резонатор с метаматериалом с возможностью подавления высших мод // Сб. докл. XIII Всероссийской научно-технической конференции «Электроника и микроэлектроника СВЧ». –Санкт-Петербург: СПбГЭТУ «ЛЭТИ. – 2024. – С. 395-399.
- Tikhonov Y. et al. Klystron Double-Gap Resonator with Integration of CeSRR Elements into the Resonance System //2024 International Conference on Actual Problems of Electron Devices Engineering (APEDE). – IEEE, 2024. – T. 1. – C. 61-64.
- Wang X. et al. Recent advances in metamaterial klystrons // EPJ Applied Metamaterials. 2021. Iss. 8. P. 9.
- 13. Zhang X. et al. Metamaterial-inspired interaction structure for MW-level klystron at 714 MHz // IEEE Transactions on Electron Devices. 2022. Iss. 69. №. 11. P. 6336-6341.
- da Silva I. B. T. et al. Design of microstrip patch antenna with complementary split ring resonator device for wideband systems application //Microwave and Optical Technology Letters. – 2015. – T. 57. – №. 6. – C. 1326-1330.