### УДК 621.396.67

# Экспериментальные измерения суммарных и разностных диаграмм направленности малоэлементной печатной антенной решетки

С.С. Сидоренко<sup>1</sup>, В.В. Демшевский<sup>1</sup>, В.В. Лободин<sup>1</sup>, А.Д. Баженов<sup>1</sup>, И.А. Богачев<sup>1</sup>, Г.С. Аникин<sup>1,2</sup>, Д.В. Багно<sup>1,2</sup>, Е.В. Ильин<sup>1,2</sup>

<sup>1</sup>АО НПП «Исток «им. Шокина», г. Фрязино

<sup>2</sup>Московский авиационный институт (национальный исследовательский университет)

Аннотация: в рамках проведенных исследований осуществлена разработка макета печатной малоэлементной антенной решетки и проведено экспериментальное измерение ее характеристик. Полученные результаты послужили основой для создания малогабаритной АФАР.

Ключевые слова: малогабаритная, антенная решетка, ФАР, АФАР, суммарно-разностный режим, макет, печатный тип.

### 1. Введение

Разработка, изготовление и сборка фазированной антенной решетки (ФАР) для радиотехнических систем и комплексов требует колоссальных ресурсов и усилий, а также больших финансовых затрат, кроме того производственно-технологические погрешности при изготовлении ФАР приводят к искажению ДН ФАР и ухудшению основных характеристик системы в целом [1-4]. В связи с чем актуальным является проведение экспериментальных измерений И отработка конструктивных, технологических решений на малоэлементных макетах антенных решеток на ранних этапах разработки. Экспериментальные измерения параметров малоэлементных антенных решеток обеспечивают получение необходимых данных для дальнейшего совершенствования АФАР. Малоэлементной антенной решеткой в таком случае может являться конструкция антенной решетки размерностью 4х4 элемента, которая позволит исследовать характеристики как суммарных, так и разностных ДН, соответствие разработанными математическими проверить на с И электродинамическими моделями, отработать технологию монтажа соединителей, сборки с делителями/сумматорами мощности и т.д.

Целью работы является экспериментальные измерения суммарных и разностных диаграмм направленности малоэлементной печатной антенной решетки Кu-дuaпазона частот; отработка технологии монтажа и сборки.

## 2. Электродинамическое моделирование малоэлементной антенной решетки на основе патч-излучателя

Электродинамическое моделирование малоэлементной антенной решетки (АР) частот Ки-диапазона осуществлялось методом конечных элементов R САПР. AP специализированном состоит ИЗ 16-ти излучающих печатных многослойных патч-излучателей на основе диэлектрической подложки С диэлектрической проницаемостью  $\varepsilon_r = 2,94$  и тангенсом диэлектрических потерь  $t_g\delta = 1,2 * 10^{-3}$ . Габаритные размеры АР не превышают  $4\lambda \ge 4\lambda \ge 0,4\lambda$ . Возбуждение модели АР осуществляется при помощи системы синфазных равноамплитудных многоканальных делителей мощности. Получение разностных ДH AP В осуществлялось при помощи использования делителя мощности в последнем слое, имеющего сдвиг фазы в 2-х парах выходов 180 градусов.

На рисунке 1 показано семейство графиков частотной зависимости КСВН на входах элементов в АР. Разброс графиков обуславливается различным взаимным влиянием излучателей друг на друга из-за их различного местоположения на АР. Из графиков видно, что рабочая полоса элементов по уровню КСВН = 2 составляет более 11%.



Рисунок 1. Семейство графиков зависимостей КСВН модели малоэлементной АР



**Рисунок 2.** Внешний вид малоэлементной АР на основе патч-излучателей. Реализация разностного режима в угломестной плоскости а); реализация разностного режима в азимутальной плоскости б)



**Рисунок 3**. Нормированные ДН модели малоэлементной АР суммарного и разностных режимов. Сечение ДН проходящей через луч в азимутальной плоскости а); Сечение ДН проходящей через луч в угломестной плоскости б)

Выбранное количество элементов в AP позволяет реализовать суммарный и разностные режимы работы в двух ортогональных плоскостях (рисунок 2). Рассчитанные ДН малоэлементной AP представлены на рисунке 3. Фазирование выполнено в направлении нормали, то есть  $\theta_0 = 0^\circ$ ,  $\varphi_0 = 0^\circ$ . Значение УБЛ ДН суммарного режима, как видно из графиков, не превышает 12дБ. Глубина нуля разностных ДН составляет менее -34дБ.

#### 3. Экспериментальные измерения макета малоэлементной АР

Внешний вид макета малоэлементной AP представлен на рисунке 4 (а). В процессе проведения экспериментальных измерений параметра КСВН на векторном анализаторе цепей (ВАЦ) Agilent N5227, рабочая полоса патч-излучателей оказалась смещена в сторону низких частот в область  $0,92f_0$ , рисунок 4 (б). Смещение рабочей полосы обуславливается расхождением модели с изготовленным макетом малоэлементной AP. Монтаж соединителей типа SMP на практике оказал непосредственное влияние на электродинамические характеристики отдельных элементов.



**Рисунок 4.** Внешний вид макета малоэлементной АР до подстройки патч-элементов а) и его семейство графиков частотной зависимости КСВН б)

Подстройка В область рабочих частот ранее смещенного диапазона корректировкой геометрических осуществлялась размеров самих патчей. Использование процесса фрезеровки позволило с необходимой точностью отсечь часть металлизированного рисунка AP, рисунок 5 (а). Изменение геометрических размеров патч-элементов повлияло на настройку рабочего диапазона на необходимую частоту, рисунок 5 (б).



**Рисунок 5.** Внешний вид макета малоэлементной АР после подстройки патч-элементов а) и его семейство графиков частотной зависимости КСВН б)

Измерения ДН антенны проводились при помощи автоматизированного измерительно-вычислительного комплекса (АИВК), предназначенного для измерений радиочастотных характеристик антенн методом ближнего поля в частотной области. Комплекс состоит из пульта дистанционного управления (ДУ), контроллера сканера, сканера, анализатора сигналов, опорно-передвижного устройства (ОПУ) и контроллера ОПУ. АИВК располагается внутри безэховой камеры (БЭК). На рисунке 4 представлена структурная схема комплекса АИВК. Измеренные ДН суммарного и разностных режимов малоэлементной АР представлены на рисунке 7, где сплошной линией изображены результаты электродинамического моделирования, пунктирной – результаты измерения макета АР. Анализ графиков на рисунке 7 демонстрирует хорошее совпадение: совпадают форма главных лепестков и нулей АР.



Рисунок 6. Структурная схема АИВК



Рисунок 7. Нормированные ДН малоэлементной АР суммарного и разностных режимов. Сплошная линия – результаты, полученные в САПР; пунктирная линия – результаты экспериментального измерения макета. Сечение ДН проходящей через луч в азимутальной плоскости а); Сечение ДН проходящей через луч в угломестной плоскости б)

### 4. Вывод

Изготовленный макет малоэлементной AP на основе патч-излучателей продемонстрировал хорошее совпадение параметров с моделью AP, разработанной при помощи электродинамического моделирования в САПР. В процессе подготовки макета к измерениям были отработаны технологические аспекты монтажа соединительных разъемов типа SMP на плату, монтажа кабельных сборок, а также проведена корректировка рабочего диапазона частот макета. Вышеперечисленные процессы отработки конструктивных, технологических решений на малоэлементных макетах AP на ранних этапах разработки, помогут в дальнейшем минимизировать производственно-технологические погрешности при изготовлении ФАР, а также избежать больших финансовых затрат, в случае расхождения параметров расчетной модели с параметрами изготовленного макета.

### Список литературы

- 1. Инденбом М.В. Антенные решётки подвижных обзорных РЛС. М.: Радиотехника. 2015.
- 2. Справочник по антенной технике / Под ред. Я.Н. Фельда, Е.Г.Зелкина. М.: ИПРЖР. 1997.
- Шифрин Я.С., Корниенко Л.Г. Статистика поля антенных решёток // Антенны. 2000. № 1 (44). С. 3–16.
- 4. Шифрин Я.С., Усин В.А. Статистическая теория антенных измерений // Антенны. 2000. № 1 (44). С. 27–62.