Исследование эмиссионных свойств катодов М-типа, модифицированных наноуглеродом

Т.М. Крачковская¹, С.Д. Журавлев¹, А.С. Емельянов¹, Р.Ю. Богачев^{1,2}, Ю.В. Якимович^{1,2}

Аннотация: в работе представлены исследования эмиссионных свойств металлопористых катодов (МПК) М-типа, модифицированных наноуглеродными частицами (астраленами и углероном) по усовершенствованной технологии. Установлено, что эмиссионная способность таких катодов выше, чем для катодов без модификации (при одинаковой плотности тока катода рабочая температура модифицированных катодов ниже, чем катодов без модификации), а их ресурсная долговечность может достигать нескольких сотен тысяч часов при рабочих температурах 920-1080 °C.

Ключевые слова: металлопористый катод, наноуглерод, эмиссионная способность, долговечность

1. Введение

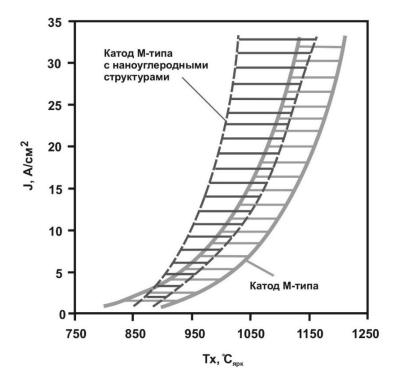
Требования к параметрам по выходной мощности и долговечности ЭВП СВЧ-диапазона, таких как лампа бегущей волны (ЛБВ), постоянно растут. В свою очередь, их совершенствование неразрывно связано требованиями к катоду. Наиболее часто применяемым в настоящее время в ЭВП является металлопористый катода (МПК) с покрытием металлов платиновой группы — М-типа или ММ-типа с добавлением тех же металлов в объем катода [1]. Для повышения плотности отбираемого тока катода необходимо увеличивать рабочую температуру, что приводит к снижению долговечности вследствие высокой скорости испарения активного вещества и ускорения процесса деградации поверхности для катодов М-типа. Поэтому актуальной задачей является применение материалов с достаточно низкой работой выхода и скоростью испарения для изготовления МПК, которые позволяют обеспечить необходимую плотность тока катода без повышения его рабочей температуры.

К подобным перспективным материалам относятся скандий и наноуглерод [2-3]. Однако, несмотря на значительный интерес разработчиков к скандиевым катодам пока их серийное применение ограничено повышенной чувствительностью к вакуумным условиям таких катодов и нестабильностью получаемых эмиссионных параметров [2]. Известно, также несколько вариантов модификации МΠК наноуглеродными частицами: астраленами, углероном, графеном [3-4]. Наиболее перспективной является МПК с добавлением углеродных нанокластеров - углерона и астраленов в активное вещество и вольфрамовую губку соответственно. Ресурсная эмиссионная долговечность такого МПК может достигать 2,5·10⁵ часов при плотности 2 А/см² [5]. Кроме того, в работе [6] представлена промышленная технология производства МПК М-типа, модифицированных наноуглеродом. Данная статья является продолжением этой работы.

Целью работы является исследование эмиссионных параметров МПК М-типа, модифицированных наноуглеродом, изготовленных по разработанной ранее промышленной технологии.

2. Результаты исследований

Были исследованы следующие варианты исполнения МПК:


¹АО «НПП «Алмаз», г. Саратов

²Саратовский государственный технический университет им. Ю.А. Гагарина

- 1. Однослойный МПК с покрытием Os-Ir-Al (М-типа), изготовленный из вольфрамового порошка фракции Б (W-Б) с добавлением 0.5 % астраленов и пропитанный алюминатом бария-кальция 3:0.5:1 ($3BaO\cdot0.5CaO\cdotAl_2O_3$) с добавлением 0.2% углерона по экспериментальной технологии [4].
- 2. Однослойный МПК М-типа, изготовленный из вольфрамового порошка фракции А (W-A) с добавлением 0.5 % вес. астраленов, изготовленный по новой технологии [7], с пропиткой алюминатом бария-кальция 3:0.5:1.
- 3. Однослойный МПК М-типа, изготовленный из W-Б с добавлением $0.5\,\%$ вес. астраленов, изготовленный по новой технологии [7], с пропиткой алюминатом бария-кальция 3:0.5:1;
- 4. Однослойный МПК М-типа, изготовленный из W-A с добавлением 0.5 % астраленов, изготовленный по новой технологии [7], с пропиткой алюминатом бария-кальция 3:0.5:1 с добавлением 0.2% углерона, изготовленного по усовершенствованной технологии [8]. Во всех образцах использован вольфрамовый порошок марки ВЧДК.

Новая технология изготовления катодного диска с астраленами [7] позволила сократить цикл изготовления МПК и исключить ручные операции, повысить равномерность распределения наночастиц в объеме катодной таблетки, а также улучшить качество катодного диска. Усовершенствованная технология изготовления активного вещества (алюминатом бария-кальция) с добавлением углерона [8] позволила повысить идентичность составов от партии к партии.

На первом этапе все варианты катодов были исследованы на эмиссионную способность в составе диодных макетов. Сравнение полученных зависимостей яркостной характеристической температуры Тх (температура, при которой режим работы катода переходит из режима ограничения пространственным зарядом в режим температурного ограничения, определенная по 20-% спаду тока) от плотности тока катода для стандартных МПК М-типа и МПК М-типа, модифицированных только астраленами или астраленами и углероном показано на рисунке 1.

Рисунок 1. График зависимости Тх от величины рабочей плотности тока для МПК М-типа и М-типа с наноуглеродными структурами

Из рисунка 1 следует, что для катодов с наноуглеродом зависимость Tx от величины рабочей плотности тока смещена в область меньших температур по сравнению с стандартными катодами без модификации. Причем данный эффект более выражен для плотностей тока выше 5 A/cm^2 . Этот факт дает возможность повышения плотности тока катода при более низких рабочих температурах (Tp), что позволит увеличить долговечность.

Далее были приведены испытания на долговечность с токоотбором при повышенной температуре (Дф) с контролем критериев: 1) снижение температурного запаса ΔTx не ниже 30 °C ($\Delta Tx = Tp - Tx$); 2) падение тока катода при Tp менее 10%. Оценка ресурсной долговечности (Др) катодов при разных рабочих температурах, проведенная по методике [9], представлена в таблице 1.

Тр, °С _{ярк}	Дф, ч	Др, ч	ΔTx,°C	Падение тока
				при Тр, %
Катод W-Б с астраленами и углероном по экспериментальной технологии [4]				
1000	7105	113680	130	3
1080		$1,04 \cdot 10^6$	50	5,88
Катод W-Б с астраленами по новой технологии [6]				
950	614	361032	37	1,23
1000		90258	87	1,86
Катод W-A с астраленами по новой технологии [6]				
920	164	221564	60	3,65
1000	314	46158	90	7,79
Катод W-A с астраленами и углероном по новым технологиям [7-8]				
950	150	88200	85	5,1
980		38400	115	3,38
1000		22050	135	2,5
Катод W-Б с астраленами и углероном по новым технологиям [7-8]				
950	150	88200	85	1,75
980		38400	115	1,03
1000		22050	135	0,84

Таблица 1. Результаты испытаний катодов на долговечность

Из таблицы следует, что все варианты исследованных катодов показали высокие значения долговечности в рабочем диапазоне температур 920-1080 °C. Наилучшие результаты показывают варианты модифицированных катодов W-Б с астраленами, т.к. падение тока в рабочей точке меньше, чем у других образцов. В настоящее время все макеты удовлетворяют критериям годности, испытания продолжаются. По результатам испытаний будет выбрана оптимальная конструкция катода.

3. Заключение

В результате проведенного исследования МПК М-типа (с пленкой Os-Ir-Al), модифицированных наноуглеродными структурами (астраленами и углероном в вольфрамовой губки И активного вещества соответственно) усовершенствованным технологиям, показали, что катоды обладают более высокой эмиссионной способностью по сравнению с аналогичными катодами без модификации – их зависимость Tx от величины рабочей плотности тока смещена в область меньших температур. Кроме того, модифицированные катоды, изготовленные усовершенстованным технологиям, обладают лучшей воспроизводимостью параметров по сравнению с экспериментальной технологией. Установлено, что ресурсная долговечность катодов с наноглеродом может достигать нескольких сотен тысяч часов в диапазоне рабочих температур катода 920-1080 °C, а катоды W-Б с астраленами обладают лучшей стабильностью характеристик в процессе наработки.

Список литературы

- 1. Gaertner G., Knapp W., Forbes R.G. Modern Developments in Vacuum Electron Sources // Topics in Applied Physics 135. Springer. Nature Switzerland AG 2020.
- 2. Скандатные термокатоды: изготовление, микроструктура и эмиссионные характеристики // Новости СВЧ-техники № 4. -2023. C.3-13
- 3. Крачковская Т.М., Сахаджи Г.В., Сторублев А.В., Пономарев А.Н. Металлопористый катод и способ его изготовления. Патент № 2658646, Заявл. 27.06.2017; опубл. 22.06.2018.
- 4. Тормозов В.Т. Металлопористый катод, модифицированный графеном / В.Т. Тормозов, П.В. Мизинов, М.Г. Рыбин, Е.В. Жарый, В.А. Резнев, Е.Д. Образцова, Е.А. Образцова // Электронная техника, Сер.1, СВЧ-техника. 2019. Вып. 4(543). С. 43-52.
- 5. Крачковская Т.М. и др. Влияние режимов и времени работы на эмиссионные характеристики катодов М-типа, модифицированных наноуглеродом / Т.М. Крачковская, П.Д. Шалаев, В.И. Шестеркин, Р.Ю. Богачев, Д.А. Тихомиров, Ю.А. Одинцова, Г.Р. Биктимирова // Материалы XXII Координационного науч.-тех. семинара по СВЧ технике. 11-15 сентября 2023 г., г. Нижний Новгород, АО «НПП «Салют». С. 5-7.
- 6. Крачковская Т.М., Емельянов А.С., Журавлев С.Д., Богачев Р.Ю. Разработка промышленной технологии производства МПК, модифицированных наноуглеродом, для применения в ЛБВ космического назначения // XIII Всероссийская научно-техническая конференция «Электроника и микроэлектроника СВЧ». Сборник докладов. Санкт-Петербург. 27 31 мая 2024 г. СПб.: СПбГЭТУ «ЛЭТИ». С. 127-130.
- 7. Крачковская Т.М., Емельянов А.С., Журавлев С.Д. Способ изготовления металлопористого катода. Патент № 2823125, Заявл. 09.10.2023, Опубл.18.07.24.
- 8. Крачковская Т.М. Способ модификации эмиссионного материала металлопористого катода, Патент № 2830229, Заявл. 28.03.2024, Опубл. 18.11.24.
- 9. Ворожейкин В.Г., Дудкин В.Н., Набоков Ю.И., Свинцов В.В. Способ оценки долговечности термокатода. Патент №1447192, Заявл. 08.05.1986. Опубл. 10.06.2000.