УДК 621.382.323

Расчет транзисторов с затворной шиной

А.В. Галдецкий, Я.Б. Мартынов

АО НПП «Исток» имени Шокина», г. Фрязино

Аннотация: исследованы характеристики мощного СВЧ транзистора с новой топологией, позволяющей существенно уменьшить площадь кристалла транзистора (или МИС) и увеличить съем кристаллов с пластины. Построенные модели учитывают распределенный и нелинейный характер цепей. Изготовлен и успешно испытан макет одной секции транзистора мощностью 1 Вт.

Ключевые слова: полевой транзистор, цепи суммирования, удлиненный затвор, связанные линии

1. Введение

Активная область традиционного мощного высокочастотного полевого транзистора содержит множество коротких параллельных друг другу электродов («пальцев»), соединенных цепями суммирования. В такой конструкции значительную долю площади занимают контактные площадки и цепи суммирования, а при повышении мощности значительно увеличивается ширина кристалла, при этом растет и площадь, занимаемая контактными площадками. В результате, как правило, активная часть (меза) занимает не более 15% площади кристалла транзистора, а в МИС – еще меньше. Указанные особенности приводят к уменьшенному съему кристаллов пластины, снижению производительности оборудования, с дополнительному расходу материалов, увеличению себестоимости.

Предложена новая топология мощного СВЧ транзистора [1], позволяющая существенно уменьшить ширину (и площадь) кристалла транзистора путем увеличения длины пальцев истока и стока элементарного транзистора. Обычно изменение амплитуды и фазы сигнала вдоль пальца затвора из-за его высокого сопротивления мешает сделать палец длинным. В [1] предлагается пальцы элементарных затворов оставить короткими, и создать отдельную низкоомную шину для подачи входного сигнала на затворы. Это выравнивает амплитуду напряжения по длине затворов. В работе построена и исследована модель, учитывающая распределенный и нелинейный характер цепей нового транзистора.

2. Структура модели

Модель учитывает:

- 1) Изменение уровня СВЧ сигнала и питания вдоль затворной шины, истока, стока и вдоль каждого пальца элементарного затвора.
- 2) Зависимость элементов эквивалентной схемы собственно транзистора от напряжений. Эти зависимости найдены по измеренным при разных напряжениях затвора и стока S-параметрам и BAX транзистора.
- 3) Взаимодействие (емкость, взаимоиндукция) затворной шины с электродами истока и стока.

Модель строится с помощью ряда вложенных подсхем. Элементарный транзистор длиной пальцев W_{finger} разбивается на ряд частей (~10) (рис.1(а)), каждая из которых представляет собой 4 связанных линии длиной ~6.25 мкм: истоковую, затворную, стоковую и линию затворной шины, описывается восьмиполюсником, показанным на рисунке 1(а), и образует подсхему. Две таких подсхемы составляют модель звена, которую можно представить в виде восьмиполюсника (рис. 1(б)). Цепочка таких

звеньев образует длинную линию, свойства которой были исследованы двумя способами: с помощью линейной и нелинейной модели. Стоковые части нескольких линий в конце соединены и нагружены сопротивлением нагрузки у_н.

Рисунок 1. Топология ячейки нового транзистора и структура подсхем его модели.

3. Линейная модель

Поскольку рассчитывается мощный транзистор, то необходимо выбирать входные и выходные импедансы так чтобы обеспечить максимальную мощность в полезной нагрузке $y_{\rm H}$ (рис.1). Однако, если модель линейна, то в ней не существует внутренних ограничений на величины амплитуд напряжения в затворной и в стоковой линиях. Поэтому проводилась условная оптимизация по $y_{\rm B}$, $y_{\rm H}$ таким образом, чтобы:

1) ни в одной точке затворной линии амплитуда напряжения ($U_{_{3H}}^{M}$) не превышала половину напряжения перекрытия транзистора $U_{_{3H}}^{M} \leq (U_p + U_0)/2$,

2) ни в одной точке стоковой линии амплитуда напряжения (U_{cu}^{M}) не превышала

половины напряжения пробоя $U_{cu}^{M} \leq (U_{max} - U_k)/2$ (рис.2), 3) ни в одной точке стоковой линии амплитуда токов (I_d^M) не превышала половины тока насыщения ВАХ 1-го звена транзистора $I_d^M \le I_{max}/2$.

Рисунок 2. ВАХ звена транзистора и характерные точки, ограничивающие максимальную мощность.

В длинной линии, составленной из цепочки звеньев, имеется шесть мод, которые разбиваются на три пары. Каждая пара образована прямой и встречной волнами, отличающимися знаком волнового числа. Текущим параметром, определяющим длину волны и длину затухания, является номер звена (М). Длина затухания волны определяется из условия уменьшения амплитуды волны в е раз по сравнению с амплитудой волны в 1-ой ячейке. Видно, что длина затухания 1,2 мод определяет максимальную длину затворной шины (таблица 1).

Параметр	1,2 мода	3,4 мода	5,6 мода
Длина волны (M)	30	57	88
Длина затухания (M)	6	56	556

Таблица 1. Параметры мод длинной линии

Проведены исследования влияния нагрузок в стоковой линии (y₀) и линии затворной шины (y_k) . Оказалось, что можно увеличить полезную мощность на ~14%, путем подключения к концу линии затворной шины согласующей индуктивности ~0.8 нГн (на 10 ГГц), что непросто реализовать на практике.

Оказалось также, что можно увеличить полезную мощность на ~15%, подбирая оптимальную нагрузку на выходе истоковой линии (у₆) (рис. 3). При этом оптимальная нагрузка имеет чисто емкостной характер (~0.16 пФ для M = 4; ~0.07 пФ для M = 6 на 10 ГГц).

Рисунок 3. Зависимости максимальной удельной (**P**) и абсолютной (**P**(**M**)) мощности от количества звеньев (**M**) в затворной линии. **XX** - $y_6=0$, **K3** - $y_6=\infty$, **все K3** – все звенья в истоковой линии заземлены.

4. Нелинейная модель

Нелинейная модель составлена аналогично линейной за исключением схемы питания. Расчеты проводились для $y_0 = y_k = y_6 = \infty$ и переменного количества звеньев. Находился максимум целевой функции, содержащей в разных пропорциях: выходную мощность, выделяемую в $y_{\rm H}$ на 1-й гармонике при двухдецибельной компрессии ($P_{2\rm д {\rm B}}$); коэффициент усиления на этой гармонике ($KU_{2\rm d {\rm B}}$) и КПД по добавленной мощности ($\eta_{2\rm d {\rm B}}$). При этом варьировались: уровень входной мощности; напряжение питания затвора (при фиксированном напряжении питания стока равном 8 В); $y_{\rm B}$, $y_{\rm H}$. Оказалось, что мощность $P_{2\rm d {\rm B}}$ (M) растет с ростом числа звеньев M вплоть до M=8, но начиная с M=5 резко падает сопутствующий коэффициент усиления $KU_{2\rm d {\rm B}}$, а начиная с M=6 и КПД $\eta_{2\rm d {\rm B}}$. Начиная с M=4 падает и плотность мощности с единицы ширины затвора, оставаясь, впрочем, примерно равной 1 Вт/мм при M=4 (рис. 4). Таким образом, при M=4 с одной ячейки транзистора с удлиненным затвором ($W_{Total} = 500$) можно получить $P_{2\rm d {\rm B}} \sim 0.5$ Вт, $KU_{2\rm d {\rm B}} = 10$ дБ, $\eta_{2\rm d {\rm B}} = 50\%$.

Рисунок 4. Зависимости максимальной выходной мощности при двухдецибельной компрессии (**P**_{2дБ}(**M**)) и удельной мощности (**P**_{2дБ}) от количества звеньев (**M**) в затворной линии.

3. Заключение

С помощью построенных распределенных моделей транзистора с затворной шиной показано, что использование затворной шины позволило избежать известное ограничение на длину затворного пальца и сделать мощный транзистор более компактным. Однако, длина затухания, связанная с потерями в затворной шине, ограничивает количество звеньев в ячейке нового транзистора. Четыре звена - это оптимальное количество звеньев для транзистора, использующего существующую технологию. Удельная мощность при этом достигает 1 Вт/мм. Показано, что можно увеличить максимальную полезную мощность примерно на 14%, подбирая емкостную нагрузку на выходе истоковой линии или индуктивную нагрузку в конце линии затворной шины. Таким образом, транзистора и, следовательно, увеличить съем кристаллов с пластины. Кроме того, появляется возможность увеличения периода расположения пальцев и облегчения теплового режима транзистора за счет увеличения площади кристалла. Изготовлен и успешно испытан макет одной секции транзистора мощностью 1 Вт.

Список литературы

1. Заявка № 2024133409, приоритет 07.11.2024, решение о выдаче патента на изобретение № 2024133409/28(074199) от 17.03.2025