УДК

Влияние профилей легирования эпитаксиального слоя диода Шоттки на его параметры

С.А. Богданов

АО «НПП «Исток» им. Шокина», г. Фрязино

Аннотация: для различных профилей легирования эпитаксиального слоя полупроводниковой структуры кремниевого диода Шоттки проведено моделирование величин его удельной барьерной емкости и напряжения, характеризующего потенциально возможный пробой структуры диода в области высоколегированной подложки. Показано, что формирование ступенчатого профиля легирования эпитаксиального слоя с толщиной переходной области у границы раздела эпитаксиальный слой – подложка порядка нескольких дебаевских длин позволяет существенно увеличить напряжение пробоя при сохранении малых значений удельной барьерной емкости диодов Шоттки.

Ключевые слова: лавинный пробой, барьерная емкость, профиль легирования, диод Шоттки

1. Введение

В СВЧ технике диоды Шоттки применяются для детектирования СВЧ сигналов, преобразования частоты в смесителях, умножения частоты, малошумящего параметрического усиления слабых сигналов, перестройки резонансной частоты колебательных систем, модуляции СВЧ сигналов, линеаризации амплитудных характеристик СВЧ усилителей мощности и др. Параметры СВЧ-устройств на их основе во многом определяются электрическими параметрами диодов.

Известно, что снижению емкости C_{KIII} и последовательного сопротивления потерь диода R_s способствуют уменьшение площади контакта Шоттки и уменьшение удельного сопротивления полупроводника, соответственно. Кроме того, снизить значение R_s можно за счет уменьшения толщины кристалла диода, снижая его механическую прочность. Однако, в случае равномерно легированной по толщине приконтактной области полупроводникового слоя диода Шоттки уменьшение его удельного сопротивления приведет к увеличению емкости C_{KIII} и уменьшению пробивного напряжения диода, а уменьшение площади контакта Шоттки увеличивает значение R_s и уменьшает пробивное напряжение диода, а уменьшение диода. Одним из способов решения задачи минимизации произведения параметров элементов эквивалентной схемы диода Шоттки $C_{KIII}R_s$ является его формирование на основе полупроводниковой структуры с неравномерным по толщине профилем легирования [1].

В работе для различных профилей легирования эпитаксиального слоя полупроводниковой структуры кремниевого диода Шоттки проведено моделирование величин его удельной барьерной емкости и напряжения, характеризующего потенциально возможный пробой структуры диода в области высоколегированной подложки, граничащей с эпитаксиальным слоем.

2. Методика оценки параметров диодов Шоттки

Рассмотрим влияние различных профилей легирования эпитаксиального слоя полупроводниковой структуры кремниевого диода Шоттки, выращенного на высоколегированной подложке, на величину его емкости при нулевом напряжении

смещения ($U_{CM} = 0$ В) на диоде C_{KIII} , а также при запирающем напряжении $U_{CM} = -5$ В, $C_{KIII}(U_{CM})$. Толщину эпитаксиального слоя примем равной a = 0,5 мкм, а концентрацию донорной примеси в подложке $N_W = 1 \cdot 10^{18}$ см⁻³. При этом будем учитывать, что пробою наиболее подвержены высоколегированные области полупроводниковых структур с высокими напряженностями электрического поля – подложка с максимумом напряженности электрического поля у границы раздела эпитаксиальный слой – подложка. Для таких областей максимальное электрическое поле в кремниевых структурах не должно превышать значения [2]

$$E_{m} = \frac{12 \cdot 10^{5}}{3 - \lg(\xi N_{W})}, \, [\text{B/cm}]$$
(1)

где коэффициент $\xi = 10^{-16}$ см³, а N_W измеряется в см⁻³. Для рассматриваемого случая $E_m = 120$ кB/см.

Будем считать, что профиль легирования эпитаксиального слоя донорной примесью ($0 \le x \le a$) описывается выражением

$$N_d(x) = N_B + G \cdot x^m, \tag{2}$$

где N_B - концентрация примеси у поверхности эпитаксиального слоя, G, m параметры функциональной зависимости $N_d(x)$. Ограничимся рассмотрением таких профилей легирования, для которых $N_d(a)$ может принимать значения из ряда [$1\cdot10^{14}$ см⁻³, $5\cdot10^{14}$ см⁻³, $1\cdot10^{15}$ см⁻³, $5\cdot10^{15}$ см⁻³, $1\cdot10^{16}$ см⁻³, $5\cdot10^{16}$ см⁻³, $1\cdot10^{17}$ см⁻³] при различных значениях G в (2) и при m принимающем одно из значений m = 0, 1, 2, 3. Так, при m = 0, выражение (2) приводит к однородному легированию эпитаксиального слоя, m = 1 задает линейный профиль легирования с величиной градиента концентрации примеси G, m = 2 и m = 3 приводит к степенным профилям легирования, которые находят применение при проектировании варикапов [3]. Таким образом, в рассматриваемых полупроводниковых структурах реализуется неравномерный по толщине профиль легирования, описываемый зависимостью (2) при $0 \le x \le a$, и $N_d(x) = N_W$ при x > a.

Барьерную емкость диодов Шоттки, сформированных на основе таких полупроводниковых структур, можно оценить воспользовавшись формулой

$$C_{KIII} = \frac{\partial Q_{SC}}{\partial U_{CM}},\tag{3}$$

где $Q_{SC} = \int_{0}^{W} \rho(x) dx$ - поверхностная плотность заряда обедненного слоя в полупроводниковой структуре, W - ширина обедненного слоя и $\rho(x)$ - плотность объемного заряда при напряжении U_{CM} , приложенном к диоду.

Для определения распределения потенциала $\varphi(x)$ в приповерхностной области полупроводниковой структуры диода Шоттки численно решалось одномерное уравнение Пуассона

$$\frac{\partial^2 \varphi}{\partial x^2} = -\frac{\rho(x)}{\varepsilon_s},\tag{4}$$

с граничными условиями $\varphi(0) = -\varphi_{BM} - E_F + U_{CM}$, $\varphi(W) = 0$, где $\varphi_{BM} = 0,7$ В – высота барьера Шоттки, E_F - положение уровня Ферми относительно дна зоны проводимости E_C в электрически нейтральном объеме полупроводника ($E_C = 0$), ε_S – диэлектрическая проницаемость, $\rho(x) = q(N_d^+(x) - n(x))$, $N_d^+(x) = N_d(x)$ – концентрационный профиль полностью ионизированной мелкой донорной примеси, $n(x) = N_C [1 + \exp(q(\varphi(x) - E_F)/kT)]^{-1}$ – концентрационный профиль электронов проводимости, N_C – эффективная плотность состояний в зоне проводимости.

Распределение потенциала $\varphi(x)$ позволяет определить напряженность электрического поля на границе раздела эпитаксиальный слой – подложка (x = a)

$$E(a) = \left| \frac{\partial \varphi}{\partial x} \right| \tag{5}$$

и определить величину запирающего диод напряжения смещения $U_{CM} = U_m$, при котором выполняется равенство $E(a) = E_m$.

3. Результаты моделирования и их анализ

В соответствии с предложенной методикой оценки параметров диодов Шоттки при различных профилях легирования эпитаксиального слоя осуществлялось моделирование величины удельной емкости диода при нулевом напряжении смещения $C_{K\!I\!I\!I}$, при напряжении «минус» 5 В $C_{K\!I\!I\!I}$ (-5), а также напряжения смещения U_m , приложенного к диоду, при котором на границе эпитаксиальный слой – подложка напряженность электрического поля достигает величины E_m .

Результаты моделирования C_{KIII} , $C_{KIII}(-5)$ и U_m для различных значений m и таких G, при которых в соответствии с (2) на границе раздела эпитаксиальный слой – подложка достигается концентрация легирующей примеси $N_d(a)$ при $N_B = 1 \cdot 10^{14}$ см⁻³ приведены в таблице 1.

Близкие значения C_{кШ} и C_{кШ} (-5) получаются при таких профилях легирования, при которых обедненная область при напряжении смещения равном нулю распространяется на всю толщину эпитаксиального слоя. Такие профили легирования представляют интерес при проектировании диодов Шоттки с низким значением емкости С_{КШ}. Для приведенных в таблице 1 характеристик профилей, отличие в удельных емкостях $C_{K\!I\!I\!I}$ и $C_{K\!I\!I\!I}(-5)$ относительно $C_{K\!I\!I\!I}(-5)$ не превышает 20 % для случаев с m = 0, 2, 3 и $N_d(a) \le 5 \cdot 10^{15}$ см⁻³, а также m = 1 и $N_{d}(a) \leq 1 \cdot 10^{15} \, \mathrm{сm}^{-3}$. Указанные результаты достигаются при отношении концентраций легирующей примеси у границы раздела эпитаксиальный слой – подложка к её значению у поверхности $N_d(a)/N_B \le 50$. При этом, низким значением C_{KIII} соответствуют и невысокие значения напряжения $U_m \leq 6,01$ В. В свою очередь к существенно большим значениям напряжения $U_{\scriptscriptstyle m}$ приводят профили легирования с $N_d(a) \ge 5 \cdot 10^{16}$ см⁻³ у границы раздела эпитаксиальный слой – подложка. Можно заметить, что для таких профилей $N_d(a) \ge 5 \cdot 10^{16}$ см⁻³ является условной границей, начиная с которой увеличивается и значение емкости $C_{KIII}(-5)$. Это приводит к тому, что при более низких напряжениях смещения ширина обедненного слоя не превышает

толщины эпитаксиального слоя и в таких случаях о низких значениях $C_{\scriptscriptstyle K\!I\!I\!I}$ говорить не приходится.

Результаты моделирования, представленные в таблице 1, также указывают на целесообразность формирования эпитаксиальных слоев с такими профилями легирования, у которых при $N_d(a) \ge 5 \cdot 10^{16}$ см⁻³ параметр m > 3. Это позволяет сформировать у границы раздела эпитаксиальный слой – подложка тонкий переходной слой с резким изменением концентрации от N_B до $N_d(a)$ и при малых значениях C_{KIII} , которые с увеличением m будут стремиться к $C_{KIII}(-5)$, получить приемлемые высокие значения напряжения $U_m > 6$ В.

т	$N_d(a), \mathrm{cm}^{-3}$	<i>Скш</i> , пФ/мм ²	<i>Скш(-5)</i> , пФ/мм ²	Um, B
0	$1 \cdot 10^{14}$	227,33	205,81	-5,38
0	$5 \cdot 10^{14}$	230,54	205,86	-5,46
0	$1 \cdot 10^{15}$	235,45	205,92	-5,55
0	$5 \cdot 10^{15}$	312,79	206,44	-6,32
0	$1 \cdot 10^{16}$	424,39	207,24	-7,28
0	$5 \cdot 10^{16}$	908,49	275,66	-14,97
1	$5 \cdot 10^{14}$	229,10	205,84	-5,43
1	$1 \cdot 10^{15}$	231,53	205,88	-5,50
1	$5 \cdot 10^{15}$	259,71	206,22	-6,01
1	$1 \cdot 10^{16}$	304,07	206,69	-6,65
1	$5 \cdot 10^{16}$	503,56	223,05	-11,79
1	$1 \cdot 10^{17}$	628,98	277,09	-18,21
2	$5 \cdot 10^{14}$	228,47	205,84	-5,42
2	$1 \cdot 10^{15}$	229,97	205,87	-5,47
2	$5 \cdot 10^{15}$	244,79	206.11	-5,85
2	$1 \cdot 10^{16}$	267,26	206,45	-6,34
2	$5 \cdot 10^{16}$	383,34	212,54	-10,19
2	$1 \cdot 10^{17}$	453,33	240,70	-15,01
3	$5 \cdot 10^{14}$	228,12	205,83	-5,41
3	$1 \cdot 10^{15}$	229,15	205,86	-5,45
3	$5 \cdot 10^{15}$	238,47	206,05	-5,76
3	$1 \cdot 10^{16}$	251,83	206,31	-6,15
3	$5 \cdot 10^{16}$	329,13	209,80	-9,24
3	$1 \cdot 10^{17}$	376,51	224,65	-13,10

Таблица 1 Результаты моделирования

Еще одним способом увеличения U_m при малых значениях C_{KIII} , вероятно более простым с технологической точки зрения относительно сложности формирования профилей легирования с высокими значениями *m* и $N_d(a)$, является формирование эпитаксиального слоя со ступенчатым профилем легирования (рисунок 1)

$$N_{d}(x) = N_{B}, \ 0 \le x < a - d \cdot L_{D} \ \text{ is } N_{d}(x) = N_{LD}, \ a - d \cdot L_{D} \le x \le a,$$
(6)

где $L_D = \sqrt{\frac{\varepsilon_S kT}{q^2 N_{LD}}}$ - дебаевская длина, $d \cdot L_D$ - толщина слоя с концентрацией

донорной примеси N_{LD} , d - безразмерный коэффициент.

Из физических соображений в (6) для уменьшения влияния переходного слоя толщиной $d \cdot L_D$ с концентрацией N_{LD} на величину C_{KIII} необходимо выполнить ряд условий $d \cdot L_D << a$, $N_B << N_{LD} < N_W$ и $1 \le d \le 10$ для эффективного снижения напряженности электрического поля на границе раздела эпитаксиальный слой – подложка, и соответственно увеличения U_m .

Рисунок 1. Ступенчатый профиль легирования эпитаксиального слоя толщиной $x_2 = a$, ($x_2 - x_1 = dL_D$).

Для оценки эффективности рассматриваемого профиля легирования (6) в части увеличения U_m при малых C_{KIII} проведены расчеты значений C_{KIII} , C_{KIII} (-5) и U_m для $d \cdot L_D = 50$ нм, $N_{LD} = 0,1N_W$ при $N_B = 1 \cdot 10^{14}$ см⁻³, a = 0,5 мкм и $N_W = 1 \cdot 10^{18}$ см⁻³. Результаты этого расчета следующие: $C_{KIII} = 241,54$ пФ/мм², C_{KIII} (-5) = 209,06 пФ/мм², $U_m = -9,1$ В. Видно, что профиль легирования (6) с указанными параметрами позволяет увеличить более чем на 50 % значение U_m при отличии удельных емкостей C_{KIII} и C_{KIII} (-5) относительно C_{KIII} (-5) не более чем на 20 % в сравнении со значениями U_m приведенными в таблице 1 для других профилей легирования с аналогичными малыми и близкими значениями C_{KIII} и C_{KIII} (-5), где $U_m < 6$ В.

3. Заключение

Приведена методика оценки параметров диодов Шоттки, основанная на численном решении уравнения Пуассона. Проанализированы различные профили легирования эпитаксиального слоя, представляющие интерес при проектировании диодов с низким значением электрической емкости контакта Шоттки.

Теоретически показано, что формирование ступенчатого профиля легирования эпитаксиального слоя с толщиной переходной области у границы раздела эпитаксиальный слой – подложка порядка нескольких дебаевских длин позволяет существенно увеличить напряжение пробоя при сохранении малых значений емкости диодов Шоттки.

Список литературы

- 1. Гусятинер М.С., Горбачев А.И. Полупроводниковые сверхвысокочастотные диоды. М.: Радио и связь, 1983.
- 2. Зи С. Физика полупроводниковых приборов // В 2-х книгах. Кн. 1. М.: Мир, 1984.
- M. H. Norwood, E. Shatz. Voltage variable capacitor tuning: A review // Proceedings of the IEEE. 1968. – T. 56. – №. 5. – C. 788-798.