Керамические и электрофизические свойства корундовой стеклокерамики, полученной по LTCC технологии

Д.С. Волощук, В.В. Анисимов, Н.А. Макаров

Российский химико-технологический университет им. Д.И. Менделеева

Аннотация: в данной работе исследовалась стеклокерамика на основе корунда, обожженная по низкотемпературной технологии спекания LTCC, с добавлением боросиликатного стекла состава SiO₂-B₂O₃-CaO-MgO-Na₂O-K₂O (SBCM). Определялось влияние концентрации боросиликатной добавки SBCM и температуры обжига на керамические и электрофизические свойства образцов. В системе Al₂O₃ / SBCM получена керамика с температурой спекания менее 925 °C: при содержании добавки 50 мас. % (четырехстадийный режим обжига): $\varepsilon r = 7,15 - 7,25$, tg $\delta = 5,2 - 5,6\cdot10^{-3}$ при частоте f = 1 МГц, усадка ~ 13,3 %, $\rho_{cp} = 2,18 - 2,23$ г/см³, $\lambda = 12,26$ Вт/м·К.

Ключевые слова: стеклокерамика, LTCC, боросиликатное стекло, электрофизические свойства, корунд

1. Введение

В последние годы происходит активный переход от HTCC (High Temperature Cofired Ceramics) - высокотемпературная технология получения совместно спекаемой (обжигаемой) керамики к низкотемпературной LTCC (Low Temperature Co-fired Ceramics). Низкотемпературный процесс LTCC обусловлен меньшей температурой спекания, применением нетоксичной высокопроводящей металлизации и лучшими эксплуатационными характеристиками. Многослойные платы, состоящие из чередующихся керамических слоев и металлизации, позволяют успешно миниатюризировать и интегрировать компоненты микроэлектронных устройств [1-3].

Термостойкая керамика, обжигаемая за один технологический цикл с добавлением модифицирующих добавок, является отличным решением для разработки стеклокерамических корпусов и плат. Представленная на мировом рынке LTCC керамика обладает температурой спекания ниже 961 °C (что обусловлено предельной температурой плавления Ад-металлизации) и высокими электро-физическими им механическими свойствами, а именно: диэлектрической проницаемостью \mathcal{E}_r от 5,0 до 9,0, тангенсом угла диэлектрических потерь tg $\delta = 2,0.10^{-3}$ до 8,0.10⁻³ при частоте f = 1 МГц, ТКЛР от 5.10⁻⁶/°C до 8.10⁻⁶/°C, прочностью на изгиб в диапазоне 160-280 МПа, теплопроводностью от 2,0 до 15,0 Вт/м·К, средней плотностью от 2,0 до 3,5 г/см³ и усадкой по осям X, Y, Z от 12,0 до 18,0 % [2, 4, 5].

Главное преимущество LTCC технологии – возможность одностадийного обжига комбинированного материала, представляющего собой керамическую матрицу и модифицирующий наполнитель, при температуре не более 961 °C (не превышающей температуру плавления серебряной металлизации). В научных работах [4, 5] приведены наиболее часто использующиеся спекающие добавки и их комбинации на основе компонентов: Y_2O_3 , BN, TiN, SiC, ZrO₂, TiO₂, CaSiO₃, CaTiO₃, CaO, MgO, Na₂O, K₂O, ZnO, SiO₂, B₂O₃, La₂O₃, Li₂O, Nb₂O₅, Yb₂O₃, Fe₂O₃, углеродных нанотрубок (CNT), гидроксиапатита и др., применение которых позволяет выдерживать низкую температуру спекания без потери электро-физических и механических свойств образцов.

В статье получена керамика на основе корунда в системе Al₂O₃ / SBCM (SiO₂-

В₂O₃-CaO-MgO-Na₂O-K₂O с температурой спекания не более 950 °C и высокими электрическими и физико-механическими свойствами, а именно: $\mathcal{E}_r = 6,0 - 8,0$, tg $\delta = 6,0 - 9,0\cdot 10^{-3}$ при частоте f = 1 МГц, $\lambda = 10,31 - 13,14$ Вт/м·К и $\rho_{cp} > 2,20$ г/см³.

Проведено совместное исследование микроструктуры, физико-механических и диэлектрических свойств полученной стеклокерамики при различных температурах и режимах обжига.

2. Подготовка образцов и экспериментальные результаты

Стеклокерамику синтезировали в 2 этапа, исследованный интервал температур составил 825 – 925 °C. На первом этапе получали спекающую добавку SBCM. Исходная шихта для синтеза стеклофазы SBCM представляет собой порошки SiO₂, H₃BO₃, CaCO₃, MgO, NaOH, KOH (KCl) квалификации не ниже ЧДА (табл. 1). Суспензию исходных компонентов получали путем измельчения в шаровой мельнице в водной среде, далее сушили, протирали через сито и прокаливали в открытом керамическом тигле в течение 2 ч при температуре 650 °C.

rushinga r. coornomenne komitonentob goodbkii bbetti (mue.							m (mae: 70)
Состав добавки, мас. %	B_2O_3	SiO ₂	CaO	MgO	Na ₂ O	K ₂ O	Т _{плав} , °С
SiO ₂ -B ₂ O ₃ -CaO-MgO-Na ₂ O-K ₂ O (SBCM)	52,0	25,0	10,0	10,0	1,0	2,0	680

Таблица 1. Соотношение компонентов добавки SBCM (мас. %)

На следующем этапе синтезировали стеклокерамику в системе Al₂O₃ / SBCM с концентрацией добавки от 40 до 60 мас. % и шагом 5 мас. %. Предварительно прокаленный порошок Al₂O₃ смешивали с модифицирующей добавкой SBCM. Смешивание проводили в водной среде в течение 24 ч, полученную шихту перетирали через сито (размер ячейки 5 мм) и прессовали в виде дисков диаметром 23 мм при давлении 100 Мпа. В качестве временной технологической связки (BTC) применялся 5 мас. % раствор поливинилового спирта.

Обжиг образцов проводили по двум режимам:

- двухстадийный режим, нагрев идет до температур 825 925 °С (шаг 25 °С) со скоростью 2 °С/мин и выдержкой 2 ч при максимальной температуре;
- четырехстадийный режим, нагрев идет до температуры 700 °С со скоростью 5 °С/мин, осуществляется выдержка 2 ч при 700 °С, далее продолжается нагрев до максимальной 825 925 °С (шаг 25 °С) со скоростью 1 °С/мин и происходит повторная выдержка 2 ч при максимальной температуре.

Во всем диапазоне температур наблюдается положительное влияние спекающей добавки SBCM, с ростом содержания которой, керамические свойства образцов растут. Так, открытая пористость Π_0 всех образцов снижается с 68,4 до 2,4 %, средняя плотность ρ_{cp} и линейная усадка $\Delta l/l$ возрастают с 1,75 до 2,27 г/см³ и с 0,0 до 17,0 % соответственно (табл. 2).

Концентрация добавки SBCM на уровне 60 мас. % является оптимальной для достаточной смачиваемости частиц корунда, при которой, процесс обжига идет по пути оплавления твердой фазы с образованием насыщенного расплава. Оптимальная температура обжига составляет 900 – 925 °C, дальнейшее повышение температуры не эффективно и приводит к пережогу образцов. Исходя из приведенных данных видно, что при концентрации добавки менее 50 мас. % и температуре обжига менее 900 °C спекания образцов не происходит. Наилучшие керамические свойства среди образцов, обожженных по двухстадийному режиму при температуре 925 °C, показал образец 40 A1 / 60 SBCM – 2.

Температура	Маркировка обжигаемого образца						
обжига, °С	(60 Al / 40	(55 Al / 45	(50 Al / 50	(45 Al / 55	(40 Al / 60		
	SBCM) - 2	SBCM) - 2	SBCM) - 2	SBCM) - 2	SBCM) - 2		
Открытая пористость П ₀ , %							
825	68,4	56,3	50,8	48,7	45,7		
850	50,5	38,5	26,3	24,5	22,7		
875	51,8	36,2	25,4	20,9	17,4		
900	50,9	34,1	20,0	17,6	2,9		
925	47,1	30,7	19,3	12,7	2,4		
Средняя плотность р _{ср} , г/см ³							
825	1,75	1,74	1,76	1,76	1,79		
850	1,76	1,73	1,76	1,92	2,18		
875	1,88	1,93	1,94	2,05	2,21		
900	1,89	1,91	1,93	2,05	2,22		
925	1,77	1,85	1,88	2,12	2,27		
Линейная усадка Δl/l, %							
825	0	0	0,4	5,3	12,4		
850	0	0,2	0,4	6,7	15,4		
875	0	0,6	2,9	7,0	15,2		
900	0,4	2	5,0	7,5	16,9		
925	1,7	3,4	6,4	8,4	17,0		

Таблица 2. Керамические свойства образцов в системе Al₂O₃/SBCM, в зависимости от концентрации добавки и температуры при двухстадийном режиме обжига

Динамика изменения керамических свойств образцов, обожженных по четырехстадийному режиму, выглядит на порядок выше, для достижения спеченного состояния образцов требуется меньшая температура и концентрация добавки SBCM. Процесс спекания идет более интенсивно и при меньшей температуре. Спекшееся состояние образцов, с содержанием добавки 45-50 мас. %, достигнуто при температурах от 850 до 875 °C, при том, что эти же образцы при двухстадийном режиме обжига обладали открытой пористостью > 25,4 % и средней плотностью < 1,94 г/см³. Линейная усадка возрастает равномерно во всем диапазоне температур, при этом, чем выше была концентрация добавки SBCM, тем более сильно повышалось значение $\Delta l/l$. Образец 50 A1 / 50 SBCM – 4 показал наилучшие керамические свойства, а именно $\Pi_0 = 1,6$ %, $\rho_{cp} = 2,23$ г/см³, $\Delta l/l = 13,3$ % (табл. 3).

Различия керамических свойств при образовании стеклокерамики по двухстадийному и четырехстадийному режимам обжига, могут быть обусловлены различиями процессов, протекающих при спекании по жидкофазному и твердофазному механизмам, а также их наложением. Для двухстадийного режима наблюдается протекание обжига по жидкофазному механизму спекания, для четырехстадийного к жидкофазному механизму добавляется также контактное плавление частиц.

T	Маркировка обжигаемого образца						
гемпература обжига, °С	(60 Al / 40	(55 Al / 45	(50 Al / 50	(45 Al / 55	(40 Al / 60		
	SBCM) - 4	SBCM) - 4	SBCM) - 4	SBCM) - 4	SBCM) - 4		
Открытая пористость П ₀ , %							
825	15,2	9,8	4,3	4,0	4,0		
850	14,6	8,7	1,6	3,3	3,1		
875	13,8	9,3	1,4	5,7	7,2		
900	13,5	9,5	3,4	6,9	10,0		
925	13,2	9,8	5,5	7,3	13,1		
Средняя плотность ρ_{cp} , г/см ³							
825	1,78	2,03	2,14	1,73	1,53		
850	1,80	2,05	2,23	1,87	1,59		
875	1,82	1,93	2,06	1,85	1,60		
900	1,79	1,82	1,95	1,79	1,61		
925	1,77	1,79	1,89	1,72	1,61		
Линейная усадка Δl/l, %							
825	4,3	5,6	7,8	8,0	8,4		
850	8,9	9,2	13,3	14,1	14,7		
875	12,3	13,5	15,6	16,2	16,7		
900	15,6	17,3	19,5	24,2	26,5		
925	18,7	19,6	23,2	25,7	28,7		

Таблица 3. Керамические свойства образцов в системе Al₂O₃/SBCM, в зависимости от концентрации добавки и температуры при четырехстадийном режиме обжига

Микроструктура полученных образцов напрямую зависит от концентрации добавки SBCM, где наиболее плотная структура образцов достигается при концентрации добавки 60 мас. % для двухстадийного режима, и 50 мас. % для четырехстадийного режима.

Рисунок 1. Микроструктура стеклокерамики состава $Al_2O_3 - SBCM$: образец 60 Al / 40 SBCM – 2, обожженный при температуре 925 °C (a); образец 50 Al / 50 SBCM – 2, обожженный при температуре 850 °C (б)

Стоит отметить, что несмотря на взаимодействие расплава добавки SBCM с основной фазой Al₂O₃, начинающееся от концентрации добавки \geq 50 мас. %, структура всех образцов остается неравномерно-зернистой, количество пор составляет не менее 5 – 10 % от объема. Основной кристаллической фазой всех образцов являются тугоплавкие частицы Al₂O₃. В процессе спекания происходит значительное выделение частиц B₂O₃ на поверхности тугоплавких частиц Al₂O₃ (рис. 1).

Диэлектрические свойства образца 50 Al / 50 SBCM – 4 с наилучшими керамическими и микроструктурными свойствами представлены на рис. 2. Показано, что с увеличением концентрации стеклофазы SBCM значения \mathcal{E}_r снижаются, а $tg \,\delta$ возрастают. Такая зависимость объясняется высокими диэлектрическими потерями добавки SBCM, представляющей собой в спеченном состоянии, прослойки и жилки аморфной стеклофазы, содержащие подавляющее большинство частиц бора и кремния с высокой степенью поляризуемости, и образующиеся на границах частиц основной корундовой фазы. Кроме того, результаты определения микроструктуры образцов показали наличие конгломератов ионов Mg^{2+} , Si^{4+} , Ca^{2+} в объеме спекшихся образцов, что совместно с миграционными потерями подвижных ионов Na^+ и K^+ , также негативно влияет на диэлектрические свойства.

Рисунок 2. Результаты определения диэлектрической проницаемости $\mathcal{E}r$ и тангенса угла диэлектрических потерь tg δ для образца 50 Al / 50 SBCM – 4 при четырехстадийном режиме и температуре обжига 850 °C, f = 1 МГц

Среди исследованных образцов, наилучшие свойства \mathcal{E}_r и $tg \,\delta$ показывают образцы 40 Al / 60 SBCM – 2 и 50 Al / 50 SBCM – 4, они следующие: $\mathcal{E}_r = 6,28$, a $tg \,\delta = 8,0\cdot 10^{-3}$; $\mathcal{E}_r = 7,2$, a $tg \,\delta = 5,2\cdot 10^{-3}$ соответственно. Различия диэлектрических свойств, полученных при двухстадийном и четырехстадийном режимах обжига, объясняются более совершенной кристаллической структурой и плотностью образца, полученными вследствие дополнительной выдержки образцов при температуре, где процесс спекания протекает наиболее интенсивно.

3. Заключение

Общий характер всех приведенных зависимостей керамических свойств образцов, обусловлен положительным влиянием роста концентрации добавки SBCM, введение которой интенсифицирует процесс спекания керамики Al_2O_3 / SBCM. Наиболее интенсивно процесс спекания протекает при концентрациях добавки 50 – 60 мас. %, концентрация добавки < 50 мас. % является недостаточной для удовлетворительного смачивания частиц Al_2O_3 и их стягивания. Характер зависимостей открытой пористости и средней плотности образцов различен и зависит от режима обжига

образцов. Результаты определения Π_0 и ρ_{cp} указывают на то, что дополнительная выдержка при температуре плавления добавки интенсифицирует процесс спекания. Снижение λ , \mathcal{E}_r и рост $tg \ \delta$ образцов, при изменении режима обжига и росте концентрации добавки и температуры, обусловлено совершенствованием микроструктуры образцов, наблюдающимся в процессе интенсификации спекания. Оптимальное соотношение температуры и концентрации добавки, позволяет получить более плотную упаковку структуры образца за счет перераспределения легкоплавких частиц добавки в объеме тугоплавкой фазы, не вызвав при этом, заплавления и состояния пережога в структуре образца.

Таким образом, введение спекающей добавки SBCM позволяет снизить температуру спекания корундовой керамики с 1075 - 1100 °C до 850 - 925 °C. Полученный таким образом материал, полностью удовлетворяет цели исследования и может быть использован при производстве LTCC керамики, обжигаемой за один технологический цикл с серебряной металлизацией, при температуре до 961 °C [3, 6].

Список литературы

- 1. Волощук, Д.С. Керамические материалы на основе Al₂O₃ для LTCC технологии (обзор) / Д.С. Волощук, В.В. Анисимов, Н.А. Макаров // Стекло и керамика. 2022. Т. 95. № 12. С. 21-26.
- Волощук, Д.С. Стеклокерамика на основе корунда, модифицированного боросиликатным стеклом для LTCC технологии / Д.С. Волощук, В.В. Анисимов, Н.А. Макаров // Стекло и керамика. - 2024.
 - Т. 97. - № 6. - С. 22-26.
- Далингер, А.Г. Низкотемпературная керамика в технологии изготовления многослойных керамических плат LTCC / А.Г. Далингер,
 А.В. Осипов // Электронная техника, СВЧ-техника /АО «НПП «Исток» им. Шокина». – 2017. – № 4. – С. 28 – 43.
- Luo, X. Microstructure, sintering and properties of CaO–Al₂O₃–B₂O₃–SiO₂ glass / Al₂O₃ composites with different CaO contents / X. Luo, L. Ren, W. Xie, L. Qian, Y. Wang, Q. Sun, H. Zhou // Journal of the Material Science. – 2016. – V. 27. - P. 5446–5451.
- 5. Chen, X. Densification and characterization of SiO₂-B₂O₃-CaO-MgO glass / Al₂O₃ composites for LTCC application / X. Chen, W. Zhang, S. Bai, Y. Du // Ceramics International. 2013. V. 39. P. 6355–6361.
- 6. Максимов, А. Многослойные керамические корпуса: Преимущества и особенности / А. Максимов // Электроника: Наука, Технология, Бизнес. 2018. №5. С. 98-106.