Секция 1. Оборудование и материалы СВЧ приборов и устройств

Nº	Время	Доклад
1	9.30	Постростовая обработка поверхности поликристаллических алмазных подложек и композитных материалов на основе алмаза Дерябкин А.В. АО "НПП "Исток" им. Шокина"
2	9.45	Исследования примесного состава пластин монокристаллического алмаза с бором для микроэлектронных применений Соломникова А.В. Санкт-Петербургский государственный электротехнический университет "ЛЭТИ" им. В.И. Ульянова (Ленина)
3	10.00	Керамические и электрофизические свойства корундовой стеклокерамики, полученной по LTCC технологии Волощук Д.С. Российский химико-технологический университет им. Д.И. Менделеева
4	10.15	Применение листовых материалов на основе вспененного полистирола при построении отражательных антенных решеток Боков М.А. Ярославский государственный университет им. П.Г. Демидова
5	10.30	Влияние условий плазмохимического осаждения на свойства тонких пленок нитрида кремния для СВЧ электроники Литвинов М.А. Санкт-Петербургский государственный электротехнический университет "ЛЭТИ" им. В.И. Ульянова (Ленина)
6	10.45	Применение композита на основе полилактида в пассивных СВЧ элементах Фролова Д.А. Национальный исследовательский Томский государственный университет «НИ ТГУ»

03 июня 2025 г. 11.15 – 13.00.

Секция 2. Моделирование СВЧ приборов и устройств

Nº	Время	Доклад
1	11.15	Влияние профилей легирования эпитаксиального слоя диода Шоттки на его параметры Богданов С.А. АО "НПП "Исток" им. Шокина"
2	11.30	Прогнозирование электрофизических характеристик GaAs HEMT методом Монте-Карло Карпов С.Н. АО "НПП "Исток" им. Шокина"
3	11.45	Расчет транзисторов с затворной шиной Мартынов А.Б. АО "НПП "Исток" им. Шокина"
4	12.00	Применение схемы стабилизации затворного смещения в МИС собственной разработки Сорвачев П.С. АО "Микроволновые системы"
5	12.15	Обнаружение признаков автогенерации МШУ на этапе электромагнитного моделирования Ольхова М.С. ООО «Радио Гигабит»
6	12-30	Синтез топологии интегральных усилительных каскадов СВЧ- диапазона с разделением элементов на функциональные группы Сальников А.С. Томский университет систем управления и радиоэлектроники
7	12-45	Методика проектирования систем организации питания аналого- цифровых КМОП СБИС Котов В.Н. Национальный исследовательский ядерный университет «МИФИ»

Секция 3. СВЧ приборы и устройства

Nº	Время	Доклад
1	14.00	Анализ возможности использования отечественной 180 нм КМОП технологии для СВЧ применений А.А. Коколов Томский государственный университет систем управления и радиоэлектроники «ТУСУР»
2	14.15	Разработка микроэлектронной компонентной базы приборных структур GaAs pin-диодов Кратович П.С. ОАО «МИНСКИЙ НИИ РАДИОМАТЕРИАЛОВ»
3	14.30	Разработка двойного балансного смесителя частот диапазона 6-18 ГГц на арсенид-галлиевой технологии Руцкой С.П. ООО «Микровейв АйСи»
4	14.45	Конструкция многослойной LDD-области в новом поколение СВЧ LDMOS-транзисторов АО «НИИЭТ» Пролубников П.В. АО «Научно-исследовательский институт электронной техники» (АО «НИИЭТ»), г. Воронеж
5	15.00	Влияние эффектов ловушек GaN HEMT транзисторов на амплитудно-фазовую нестабильность импульсных СВЧ усилителей мощности Емельянов Б.В. AO «НПП «Пульсар»
6	15.15	GaAs pHEMT монолитные интегральные схемы усилителей мощности 26-38 ГГц Ефимов А.С. АО "НПП "Исток" им. Шокина"
7	15.30	Сверхширокополосный усилитель мощности МС4000-2 Миннебаев С.В. АО «Микроволновые системы»
8	15.45	Методика интерактивного визуального расчета входного каскада интегрального оптического приемника во временной области Черкашин М.В. Томский государственный университет систем управления и радиоэлектроники «ТУСУР»

Секция 4. Вакуумные СВЧ приборы и устройства

Nº	Время	Доклад
1	9.30	Настоящее и будущее гироприборов: наиболее яркие результаты и перспективные приложения Глявин М.Ю. Федеральный исследовательский центр Институт прикладной физики имени А. В. Гапонова-Грехова РАН
2	9.45	Компактный гиротрон с рабочей частотой 395 ГГц Запевалов В.Е. Федеральный исследовательский центр Институт прикладной физики имени А.В.Гапонова-Грехова РАН
3	10.00	Проект мультигигаваттного МСЭ W-диапазона планарной геометрии на базе ускорителя У-2 Песков Н.Ю. Федеральный исследовательский центр Институт прикладной физики имени А. В. Гапонова-Грехова РАН
4	10.15	Физические причины ограничения долговечности многолучевых клистронов и возможности ее увеличения Галдецкий А.В. АО "НПП "Исток" им. Шокина"
5	10.30	Применение алгоритмов масштабирования при проектировании мощных клистронов Иванов В.Я. Федеральный исследовательский центр Институт прикладной физики имени А. В. Гапонова-Грехова РАН
6	10.45	Экспериментальное исследование прототипа мегаваттного гиротрона с частотой генерации 230 ГГц Фокин А.П. Федеральный исследовательский центр Институт прикладной физики имени А.В. Гапонова-Грехова РАН

Секция 5. Вакуумные СВЧ приборы и устройства

Nº	Время	Доклад
1	11.15	Модели эмиттеров в ПО «Elisa» Куликова И.В. АО "НПП "Исток" им. Шокина"
2	11.30	Особенности электродинамических характеристик замедляющих систем типа ЦСР многолучевых ЛБВ Богомолова Е.А. АО "НПП "Исток" им. Шокина"
3	11.45	Быстрые методы интегральных уравнений для синтеза сверхразмерных волноводных компонентов в составе квазиоптических систем гиротронов Гаштури А.П. АО "НПП "Исток" им. Шокина"
4	12.00	Исследование лампы бегущей волны с неоднородной замедляющей системой типа «цепочка связанных резонаторов» с шириной рабочей полосы частот более 1ГГц и выходной импульсной мощностью более 20 кВт Ржевин Н.В. АО "НПП "Алмаз"
5	12.15	Оценка отклонений параметров неоднородных резонаторных замедляющих систем ЛБВ по измеренным методом резонансных возмущений распределениям электромагнитных полей Савин А.Н. АО "НПП "Исток" им. Шокина"
6	12.30	Формирование поля на катоде в МПФС с 3-ей гармоникой для ЛБВ Х-диапазона Филин Ю.Ю. АО "НПП "Исток" им. Шокина"
7	12.45	Опыт моделирования сверхмощного клистрона с неоднородным постоянным фокусирующим магнитным полем Юнаков А.Н. АО "НПП "Исток" им. Шокина"

Секция 6. Вакуумные СВЧ приборы и устройства

Nº	Время	Доклад
1	14.00	Долговечность молекулярно-напыленных оксидных микрокатодов, изготовленных с применением лазера Жабин Г.А. АО "НПП "Исток" им. Шокина"
2	14.15	Электронно-оптическая система для многолучевого ЭВП СВЧ W-диапазона Голованов Н.А. АО "НПП "Исток" им. Шокина"
3	14.30	Исследование эмиссионных свойств катодов М-типа, модифицированных наноуглеродом Крачковская Т.М. АО "НПП "Алмаз"
4	14.45	Исследование влияния динамики изменений недокальных характеристик на долговечность металлопористых катодов в процессе их эксплуатации в ЛБВ Крачковская Т.М. АО "НПП "Алмаз"
5	15.00	Термоэлектронная эмиссия с управляющих сеток из гафния и анизотропного пиролитического графита в КСУ мощной импульсной ЛБВ Ржевин Н.В. АО "НПП "Алмаз"
6	15.15	Разработка электронно-оптической системы с полевым эмиттером для использования в гиротроне 140 ГГц Тарадаев С.П. Санкт-Петербургский политехнический университет Петра Великого
7	15.30	Модернизация магнитной периодической фокусирующей системы многолучевого клистрона с целью увеличения зоны устойчивой фокусировки Саблин В. АО "НПП "Торий"

05 июня 2025 г. 9.30 – 11.00.

Секция 7. Антенны и фазированные антенные решетки и их элементы

Nº	Время	Доклад
1	9.30	Устройства распределения СВЧ на основе симметричной щелевой линии Лободин В.В. АО "НПП "Исток" им. Шокина"
2	9.45	Моделирование согласующих профилей для коаксиальных нагрузок на основе цилиндрических СВЧ-резисторов Бахтеев И.Ш. АО "НПП "Алмаз"
3	10.00	Разработка коаксиального СВЧ аттенюатор до 40 ГГц на основе численного электродинамического моделирования Малышев И.Н. АО «НПО «ЭРКОН», г. Нижний Новгород
4	10.15	Делитель мощности Ка-диапазона с высокой развязкой на основе волновода интегрированного в подложку Мирошник П.С. АО "НПП "Исток" им. Шокина"
5	10.30	Полосовые LC-фильтры СВЧ диапазона Тимошенко Т.С. АО «Омский научно-исследовательский институт приборостроения»
6	10.45	Влияние конструктивных параметров объемных резонаторов на АЧХ фильтра А.А. Тюменцева АО «Омский научно-исследовательский институт приборостроения»

Секция 8. Антенны и фазированные антенные решетки и их элементы

Nº	Время	Доклад
1	11.15	16-ти канальный 100-Вт объемный сумматор мощности в диапазоне 2-20 ГГц Лицов А.А. АО «Микроволновые системы»
2	11.30	Влияние сопротивления потерь и собственной ёмкости катушек индуктивности на диапазон перестройки LC-фильтров на связанных контурах Забегайло И.В. АО «Омский научно-исследовательский институт приборостроения»
3	11.45	Улучшение электрических характеристик гибкой волноводной секции Самородова Е.А. АО «ИЭМЗ «Купол», г. Ижевск
4	12.00	Разработка быстродействующего волноводного переключателя высокого уровня мощности Корзников В.В. АО «ИЭМЗ «Купол», г. Ижевск
5	12.15	Усилитель мощности Ки-диапазона на НЕМТ-транзисторах Легкова Т.К. АО «Обуховский завод»
6	12.30	Влияние диэлектрической проницаемости согласующего и симметрирующего устройства сверхширокополосной спиральной антенны на отклонение диаграммы направленности Павлов И.Д. АО "Центральное конструкторское бюро автоматики"
7	12.45	Приемо-передающая широкополосная конусная логоспиральная антенна ОВЧ и УВЧ-диапазона Ходунов В.А. АО "Центральное конструкторское бюро автоматики"
8	13.00	Исследование влияния нагрева на характеристики антенной решетки с электронным сканированием Демшевский В.В. АО "НПП "Исток" им. Шокина"

Секция 9. Антенны и фазированные антенные решетки и их элементы

Nº	Время	Доклад
1	14.00	Моделирование зоны обнаружения низколетящих целей с учетом экранирующего воздействия рельефа местности Соловьев Д.А. АО «ИЭМЗ «Купол», г. Ижевск
2	14.15	Результаты исследования методов оценки интегрального коэффициента шума приёмной части АФАР Протасов В.И. АО "НИИП имени В.В.Тихомирова"
3	14.30	Метод расчета характеристик конформных ФАР на основе измерений полей антенных элементов Селезнев В.М. ООО НПП "ПРИМА"
4	14.45	Экспериментальные измерения суммарных и разностных диаграмм направленности малоэлементной печатной антенной решетки Сидоренко С.С. АО "НПП "Исток" им. Шокина"
5	15.00	Комплексированная антенная система X и Ки диапазонов Кузнецов В.В. Филиал РТУ МИРЭА в г. Фрязино
6	15.15	Устройство симметрирования и согласования для сверхширокополосной спиральной антенны Павлов И.Д. АО "Центральное конструкторское бюро автоматики"
7	15.30	Разработка антенн малогабаритной буксируемой ложной цели аппаратуры радиотехнической защиты высокосортных летательных аппаратов с повышенными требованиями обеспечения электродинамической развязки Ходунов В.А. АО "ЦНИРТИ им. академика А.И.Берга"
8	15.45	Семисегментная антенная решетка для приема сигналов ГЛОНАСС в диапазонах частот L1 и L2 Башкетов А.А. АО "ЦНИРТИ им. академика А.И.Берга"

Секция 10. Измерения на СВЧ и электромагнитная совместимость

Nº	Время	Доклад
1	9.30	Некоторые решения для измерения и настройки параметров ВЧ ЭКБ в интервале температур Глазунов Р.В. ООО «ОТК» - T°Lab, г. Волгоград
2	9.45	Исследование радиопоглощающих и экранирующих свойств тканевого композиционного материала на основе полипиррола и хлопка Щербаков А.Е. Санкт-Петербургский государственный электротехнический университет "ЛЭТИ" им. В.И. Ульянова (Ленина)
3	10.00	Особенности измерения электромагнитных параметров дефектных образцов в коаксиальной измерительной ячейке на СВЧ Кулешов Г.Е. Национальный исследовательский Томский государственный университет «НИ ТГУ»
4	10.15	Неразрушающая терагерцовая дефектоскопия конструкционных материалов методом безлинзовой визуализации Пидотова Д.А. Национальный исследовательский Томский государственный университет «НИ ТГУ»
5	10.30	Контроль параметров изделий электронной техники в микрополосковых линиях передачи Терентьев А.А. ООО «Скоростные системы связи»
6	10.45	Исследование рабочих характеристик магнетрона в произвольном электродинамическом реакторе Иванов В.А. Санкт-Петербургский государственный электротехнический университет "ЛЭТИ" им. В.И. Ульянова (Ленина)
7	11.00	Автоматизированная ТГц дефектоскопия с применением сверточной нейронной сети Перевалов А.В. Национальный исследовательский Томский государственный университет «НИ ТГУ»

Секция 11. Разные вопросы СВЧ электроники

Nº	Время	Доклад
1	11.30	Резонансные эффекты в СВЧ фотонных кристаллах с изменяемой структурой интерфейса Скрипаль А.В. ФГБОУ ВО «Саратовский национальный исследовательский государственный университет имени Н.Г. Чернышевского»
2	11.45	Мощный СВЧ-фотодиодный модуль с оптическим усилителем на легированном эрбием волокне Микитчук К.Б. ГНПО "Оптика, оптоэлектроника и лазерная техника"
3	12.00	Полосно-заграждающий фильтр КВЧ диапазона на основе периодических диэлектрических структур Кулешов Г.Е. Национальный исследовательский Томский государственный университет «НИ ТГУ»
4	12.15	Нелинейный параметрический распад в двухкомпонентных магнитных метаповерхностях ЖИГ/Fe Бир А.С. ФГБОУ ВО «Саратовский национальный исследовательский государственный университет имени Н.Г. Чернышевского»
5	12.30	Нелинейное устройство резонаторной магноники на основе супертонкой пленки железо-иттриевого граната Гришин С.В. ФГБОУ ВО «Саратовский национальный исследовательский государственный университет имени Н.Г. Чернышевского»
6	12.45	Волноводные моды обменных спиновых волн в эпитаксиальной пленке ЖИГ Тихонов В.В. ФГБОУ ВО «Саратовский национальный исследовательский государственный университет имени Н.Г. Чернышевского»
7	13.00	Численный метод решения уравнения Ландау-Лившица-Гильберта в приближении среднего поля Иванов Н.А. Санкт-Петербургский государственный электротехнический университет "ЛЭТИ" им. В.И. Ульянова (Ленина)