Влияние времени ультразвуковой обработки на процесс минерализации волокон поликапролактона микрочастицами ватерита

Н.В. Короневский, И.С. Великанов, Б.В. Сергеева, А.А. Андреев, И.В. Хайрушев, В.И. Гукова, С.А. Сергеев

СГУ им. Н.Г. Чернышевского

Аннотация: В работе проведено исследование влияния времени ультразвуковой обработки на процесс минерализации волокон поликапролактона микрочастицами ватерита. Определено оптимальное время воздействия ультразвука на композитный материал для формирования однородного и равномерного покрытия.

Ключевые слова: микрочастицы карбоната кальция, волокна поликапролактона, регенеративная мелипина

1. Введение

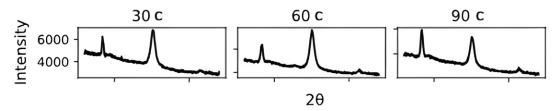
Одним из перспективных направлений развития регенеративной медицины является разработка новых биомедицинских материалов на основе функционализированных биосовместимых полимерных матриц [1-5]. Минерализация волокон поликапролактона (ПКЛ) пористыми микрочастицами ватерита позволяет получать материалы, отвечающие таким предъявляемым к тканеинженерным имплантатам требованиям как биосовместимость, биоразлагаемость, а также возможность колонизации каркаса клетками с целью формирования новой живой ткани, обладающей структурой и функциями, аналогичными нативной биоткани [6-7]. Кроме того, такой композитный материал обладает не только улучшенной остеокондуктивностью, но и возможностью загрузки биологически активных молекул и их последующего контролируемого высвобождения [8-12].

Возрастающий интерес, проявляемый в настоящее время к магнитным наночастицам, вызван поиском новых материалов для практических применений, в частности для поглощения СВЧ излучения в широких диапазонах и обладающих при этом тонкой структурой [13, 14]. Такой композитный материал, обладающий высокими экранирующими свойствами, может быть использован для экранирования (защиты) промышленного оборудования и зданий. В [15] показан метод получения композитного материала из волокнистого полотна, пропитанного смесью частиц магнетита с полимером в качестве связующего компонента, обладающего высокими экранирующими свойствами в СВЧ-диапазоне.

В настоящее время ведется интенсивное исследование электрофизических и магнитных свойств композитных материалов на основе наночастиц магнетита в связи с возможностью их применения в различных областях техники и электроники [16]. Научной группой авторов разработана технология получения нового композитного материала [17-19] на основе волокон ПКЛ, выступающих в качестве матрицы [20-24], и микрочастиц карбоната кальция (CaCO₃) [25-31] со встроенными в их структуру наночастицами магнетита [23, 32-36] в качестве наполнителя.

Целью данного исследования является исследование влияния времени ультразвуковой обработки на процесс минерализации волокон поликапролактона микрочастицами ватерита и качество формируемого покрытия.

2. Подготовка образцов и экспериментальные результаты


Для получения волокон поликапролактона использовался метод электроформования. Раствор ПКЛ с концентрацией 10 % мас. получали путем растворения гранул в смеси метановой и этановой кислот с массовым соотношением 1:1. Гомогенность электроформовочного раствора достигалась непрерывным перемешиванием гранул поликапролактона в смеси указанных кислот в течение 2 часов при комнатной температуре. Волокна формировались в течение 3 часов (приложенное напряжение 75 кВ, скорость подачи 7,8 мл/час). Расстояние между иглой и собирающим экраном составляло 0,25 м. Нетканый материал был сформирован последовательным нанесением на подложку десяти слоёв волокон ПКЛ со средним диаметром 100 ± 50 нм.

В работе [37] представлен алгоритм минерализации волокон поликапролактона микрочастицами CaCO₃. Минерализация проводилась в ультразвуковой (УЗ) ванне «Сапфир» при интенсивности излучения 0,64 Вт/см² и рабочей частоте 35 кГц в реакционной смеси рабочих растворов солей CaCl₂ и Na₂CO₃ с концентрацией 1 М. В процессе минерализации использовали по 4 мл рабочих растворов и образцы волокон ПКЛ размером 2 × 2 см. Перед проведением минерализации образцы ПКЛ помещались в ёмкость с 4 мл раствора CaCl₂ и подвергались УЗ обработке в течение 10 минут. Не прерывая воздействие ультразвука, в систему вводилось 4 мл раствора Na₂CO₃. Через 30 секунд образец ПКЛ изымался из ванны и оставлялся для завершения процесса кристаллизации. Обработанные образцы промывались деионизированной водой и в течение 20 мин сушились в сушильном шкафу при 40°С. Процесс минерализации проводился еще два раза.

Морфология поверхности полученных образцов исследовалась сканирующей электронной микроскопией на базе растрового электронного микроскопа высокого разрешения Mira II LMU фирмы «TESCAN» в режиме вторичных электронов. Ускоряющее напряжение составляло 30 кВ, диаметр пучка — 3,2 нм. Для проведения исследований на образцы напыляли золотое покрытие.

Анализ фазового состава проводился с использованием рентгеновского дифрактометра ДРОН-8Т (АО «ИЦ» Буревестник», Россия, Санкт-Петербург). Измерения рентгеновских дифрактограмм проводили «на просвет» с использованием СиКα-излучения. Качественный состав исследовался с помощью базы данных PDF-2 (версия 2021 г.). Для определения соотношения между фазами рентгеновские дифрактограммы анализировались методом Ритвельда.

На скорость протекания химической реакции между растворами солей, в процессе которой формируются микрочастицы ватерита, оказывает влияние УЗ обработка, длительность которой в работе варьировали от 30 до 90 секунд, после чего получали уточнённые дифрактограммы в интервале 2θ от 27° до 37° с увеличенным временем экспозиции (рисунок 1).

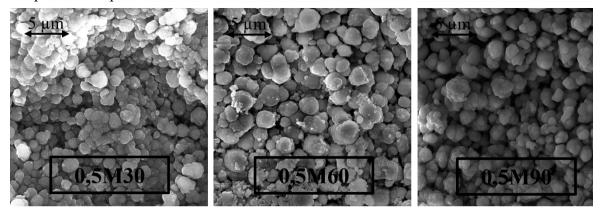


Рисунок 1. Рентгеновские дифрактограммы исследуемых образцов композитных нетканых материалов, подвергавшихся ультразвуковой обработке длительностью 30 с, 60 с и 90 с.

По приведенным выше дифрактограммам определяли соотношение между фазами, используя параметры элементарных ячеек, предварительно оцененные по

полной дифрактограмме (диапазон 2θ от 20° до 70°). Массовая доля кальцита относительно всей массы карбоната кальция в исследуемых образцах зависит от времени УЗ обработки: при длительности УЗ обработки 30 секунд она составляет 10 %, при 60 секундах -7 %, при 90 секундах -14 %.

На рисунке 2 представлены СЭМ изображения поверхности образцов синтезированного композитного материала. Визуально включений кальцита на поверхности образцов не наблюдается.

Рисунок 2. СЭМ изображения образцов после проведения трёх циклов минерализации при варьировании времени УЗ обработки.

С помощью программного обеспечения Image J были определены средние размеры сформированных микрочастиц карбоната кальция. В каждом образце анализу подвергали 100 микрочастиц. При УЗ обработке продолжительностью 30 секунд средний диаметр микрочастиц ватерита, синтезированных на волокнах ПКЛ составил 0.8 ± 0.5 мкм, при 60 секундах -1.1 ± 0.3 мкм, при 90 секундах -1.3 ± 0.3 мкм.

Эффективная площадь поверхности для адсорбции микрочастиц ватерита увеличивается с уменьшением размера микрочастиц; процесс загрузки биологически активных веществ при этом проходит более эффективно. Наименьший размер сформированных микрочастиц ватерита наблюдается у образцов, подвергавшиеся 30-секундной УЗ обработке, однако наиболее однородное, равномерное и качественное покрытие сформировано в образцах после 60 секунд УЗ обработки, что подтверждается результатами анализа фазового состава.

3. Заключение

В результате проведённых исследований было установлено, что при концентрации рабочих растворов солей хлорида кальция и карбоната натрия 0,5 моль/л оптимальное время ультразвуковой обработки для формирования наиболее однородного и равномерного покрытия составляет 60 секунд.

Список литературы

- 1. Edgar L. et al. Regenerative medicine, organ bioengineering and transplantation // Journal of British Surgery. 2020. Vol. 107(7). P. 793-800.
- 2. Wei W., Dai H. Articular cartilage and osteochondral tissue engineering techniques: Recent advances and challenges // Bioactive materials. 2021. Vol. 6(12). P. 4830-4855.
- 3. Yang J. et al. Localized delivery of FTY-720 from 3D printed cell-laden gelatin/silk fibroin composite scaffolds for enhanced vascularized bone regeneration // Smart Materials in Medicine. 2022. Vol. 3. P. 217-229.
- 4. Thadepalli S. Review of multifarious applications of polymers in medical and health care textiles // Materials Today: Proceedings. 2022. Vol. 55. P. 330-336.
- 5. Darder M., Aranda P., Ruiz-Hitzky E. Bionanocomposites: A new concept of ecological, bioinspired, and functional hybrid materials // Advanced Materials. 2007. Vol. 19(10). P. 1309-1319.

- 6. Dvir T. et al. Nanotechnological strategies for engineering complex tissues // Nat. Nanotechnol. 2011. Vol. 6. P. 13-22.
- 7. Grayson W. et al. Biomimetic approach to tissue engineering. Seminars in cell & developmental biology // Academic Press. 2009. Vol. 20(6). P. 665-673.
- 8. Sergeeva A. et al. Composite Magnetite and Protein Containing CaCO₃ Crystals. External Manipulation and Vaterite→Calcite Recrystallization-Mediated Release Performance // ACS Applied Materials & Interfaces. 2015. Vol. 7(38). P 21315-25.
- 9. Sergeeva A. et al. Vaterite→calcite recrystallization of magnetic calcium carbonate microparticles // The nanoparticles and nanostructured coatings microcontainers: technology, properties and applications. Mater. 6th Int. Conf. SSU. Saratov: SSU, 2015. P. 72.
- 10. Roth R. et al. Functionalized calcium carbonate microparticles for the delivery of proteins // European Journal of Pharmaceutics and Biopharmaceutics. 2018. Vol. 122. P. 96-103.
- 11. Yahaya S., Ibrahim T., Ibrahim A.-R. Template-Free Synthesis and Control Drug Release of Calcium Carbonate-Hydroxylapatite Composite // Amer. J. Multidisc. Res. and Inn. 2022. Vol. 1 (2). P. 56.
- 12. Parakhonskiy B. V. et al. Macromolecule Loading into Spherical, Elliptical, Star-Like and Cubic Calcium Carbonate Carriers // ChemPhysChem. 2014. Vol. 15(13). P. 2817-2822.
- 13. Shen Y. Q. et al. Preparation of microwave absorbing Co-C nanofibers with robust superhydrophobic properties by electrospinning // J. Mater. Sci. Mater. Electron. 2019. Vol. 30. P. 3365-3377.
- 14. Yan P. et al. Microwave absorption properties of magnetite particles extracted from nickel slag // Materials. 2020. Vol. 13(9). P. 2162.
- 15. Шорсткий И. А., Соснин М. Д. Способ получения композитного материала. Патент РФ № 2713365 С1. МПК H01Q 17/00, C08J 5/06. № 2019109591: заявл. 01.04.2019: опубл. 04.02.2020.
- 16. Voronin D. V. et al. Magnetic Composites with Embedded Magnetite Nanoparticles: Preparation, Control of Physical Properties, Applications // Izvestiya of Saratov University. Physics. 2013. Vol. 13(2). P. 50-54. (in Russian).
- 17. Короневский Н. В. и др. Исследование процесса перекристаллизации микрочастиц карбоната кальция, выращенных на волокнах поликапролактона, с помощью сканирующей электронной микроскопии и рентгеновской дифракции // Известия Саратовского университета. Новая серия. Серия: Физика. 2023. Т. 23, вып. 2. С. 179-187.
- 18. Koronevskiy N. V.et al. Composite mesoporous vaterite-magnetite coatings on polycaprolactone fibrous matrix // Izvestiya of Saratov University. Physics. 2022. –Vol. 22(1). P. 62-71. (in Russian).
- 19. Короневский Н. В. и др. Способ минерализации органических волокон поликапролактона микрочастицами карбоната кальция. Патент № 2761321 РФ, МПК D01F 11/04, D01F 11/12, A61F 2/00. № 2021101913; Заявл. 28.01.2021; Опубл. 07.12.2021, Бюл. № 34.
- 20. Короневский Н. В. Синтез и исследование свойств микрочастиц CaCO₃, выращенных на неорганических волокнах и модифицированных наночастицами Fe₃O₄ // Методы компьютерной диагностики в биологии и медицине 2017. Саратов: Саратовский источник, 2017. С. 120-123.
- 21. Сергеев С. А. Исследование свойств неорганических нановолокон с микрочастицами CaCO₃ на сверхвысоких частотах // Электроника и микроэлектроника СВЧ. 2017. Т. 1. С. 155-159.
- 22. Сергеев С. А. Синтез и исследование свойств неорганических нановолокон с микрочастицами $CaCO_3$ // НННФ: тезисы докладов. Саратов: Техно-Декор, 2017. С. 249-251.
- 23. Короневский Н. В. Формирование и исследование свойств микрочастиц карбоната кальция с наночастицами магнетита на неорганических нановолокнах // Актуальные вопросы биомедицинской инженерии: VII Всеросс. конф. Саратов: СГТУ, 2018. С. 38-42.
- 24. Сергеев С. А. и др. Технология получения микрочастиц карбоната кальция, модифицированных наночастицами магнетита, на неорганических волокнах // Нано- и биомедицинские технологии. Управление качеством. Проблемы и перспективы. Саратов: Техно-Декор, 2018. С. 76.
- 25. Volodkin D. V. et al. Pure Protein Microspheres by Calcium Carbonate Templating // Angew. Chem., Int. Ed. 2010. Vol. 49. P. 9258-9261.
- 26. Volodkin D. CaCO₃ Templated Micro-Beads and -Capsules for Bioapplications // Adv. Colloid Interface Sci. 2014. Vol. 207. P. 306-324.
- 27. Fakhrullin R. F. et al. Magnetically responsive calcium carbonate microcrystals // ACS Applied Materials & Interfaces. − 2009. − Vol. 1. − № 9. − P. 1847-1851.

- 28. Sukhorukov G. B. et al. Porous calcium carbonate microparticles as templates for encapsulation of bioactive compounds // Journal of Materials Chemistry. 2004. Vol. 14. № 14. P. 2073-2081.
- 29. Сергеева А. С. и др. Исследование процесса перекристаллизации магнитных микрочастиц // Фундаментальные и прикладные аспекты новых высокоэффективных материалов. Казань: ИП Синяев Д.Н., 2013. С. 142-144.
- 30. Сергеев С.А. и др. Исследование свойств водотопливных эмульсий с наночастицами магнетита на сверхвысоких частотах // В мире научных открытий. − 2014. − № 4(52). − С. 148-160.
- 31. Сергеев Р. С. и др. Формирование и исследование сферических пористых микрочастиц карбоната кальция, обладающих магнитными свойствами // Наноматериалы и нанотехнологии: проблемы и перспективы. Москва: Прондо. 2014. С. 275-283.
- 32. Fajaroh F. et al. Synthesis of Magnetite Nanoparticles by Surfactant-Free Electrochemical Method in an Aqueous System // Adv. Adv. Powder Technol. 2012. Vol. 23. P. 328-333.
- 33. Сергеев С. А. и др. Коллоиды магнетита: получение и исследование свойств в СВЧ диапазоне // Полупроводниковая электроника и молекулярные нанотехнологии. Саратов: Наука, 2013. С. 214-228.
- 34. Gorin D. A. Effect of microwave radiation on polymer microcapsules containing inorganic nanoparticles // Technical Physics Letters. 2006. Vol. 32. № 1. P. 70-72.
- 35. Sergeev S. A. et al. Investigation of absorption and reflection spectra of aqueous suspensions of nanoparticles in the X band of microwave bandwidth // Proceedings of SPIE The International Society for Optical Engineering. Saratov, 2007. P. 653606.
- 36. Короневский Н. В. и др. Влияние концентрации наночастиц магнетита в коллоидном растворе на процесс их инкапсуляции в минерализованные волокна поликапролактона // Электроника и микроэлектроника СВЧ. 2023. Т. 1. С. 642-646.
- 37. Savelyeva M. S. et al. Vaterite coatings on electrospun polymeric fibers for biomedical applications // Journal of Biomedical Materials Research Part A. 2017. Vol. 105 (1). P. 94-103.