УДК 546.26-162

Исследование теплового сопротивления транзисторных сборок с двухслойным теплоотводом на основе композиционного материала алмаз карбид кремния - кремний.

М.Ю. Никитина¹, Е.Н. Куликов¹, Ю.Ю. Федоров¹, А.В. Дерябкин¹ С.К. Гордеев², С.Б. Корчагина²

¹АО «НПП «Исток» им. Шокина»

² АО «ЦНИИМ»

Аннотация: проведены исследования величины теплового сопротивления транзисторных сборок с теплоотводом на основе поликристаллического алмаза – композитного материала «Скелетон». Показано, что нанесение тонкой пленки поликристаллического алмаза на поверхность композита существенно улучшает теплофизические и электроизоляционные свойства последнего. Рассчитана эффективность работы теплоотвода из такой двухслойной композиции в зависимости от его толщины и выбрана оптимальная конструкция. Установлено, что оптимальная толщина пленки поликристаллического алмаза составляет 150 мкм.

Ключевые слова: транзисторная сборка, поликристаллический алмаз, композиционный материал, тепловое сопротивление, теплопроводность

1. Введение

Увеличение уровня выходной мощности транзисторов и сборок на их основе связано, в частности, с обеспечением эффективного отвода тепла от активной области прибора. Для этого, в качестве теплораспределительного элемента обычно используют теплоотвод из AlN или BeO-керамики с величиной теплопроводности (180 ÷ 220) Вт/м·К или теплоотвод из поликристаллического алмаза [1, 2] с величиной теплопроводности (800 ÷ 1200) Вт/м·К.

В результате численного моделирования [3,4] определена оптимальная толщина теплоотвода из поликристаллического алмаза, которая составляет (400 ÷ 800) мкм. Это и трудности обработки материала обуславливают достаточно высокую стоимость теплоотвода.

В работе [5] в качестве теплоотвода для мощных LDMOS-транзисторов использовали композиционный материал на основе алмаза, карбида кремния и кремния (АКК) «Скелетон» [6]. В зависимости от состава композита его теплопроводность варьируются в пределах (400 ÷ 600) Вт/м·К.

Однако материал не является диэлектриком, что ограничивает область его применения. Для увеличения электрического сопротивления между кристаллом транзистора и металлическим фланцем без ухудшения его теплофизических свойств на поверхность композита предложено нанести тонкую пленку поликристаллического алмаза.

В качестве параметров, характеризующих тепловые свойства транзисторных сборок, обычно используют тепловое сопротивление R_T и температуру кристалла прибора T_{CH} во время эксплуатации. Важность информации о температуре кристалла транзистора определяется тем, что от нее существенно зависит надежность прибора. Тепловое сопротивление транзисторов характеризует интенсивность отвода тепла от кристалла транзистора и связывает предельные электрические возможности прибора по передачи мощности с условиями температурных ограничений.

2. Подготовка образцов и экспериментальные результаты

Расчет величины R_T и изменения температуры кристалла проводился с помощью программы численного моделирования тепловых полей от тепловыделяющих элементов прибора [3]. Программа позволяет моделировать постоянные (по времени) температурные распределения внутри твердого тела, имеющего слоистую структуру, со слоями разной толщины и разной величиной теплопроводности.

Рассматриваемая модель корпусированного транзистора приведена на рисунке 1.

Рисунок 1. Схематическая модель корпусированного транзистора. 1 – кристалл, 2 – припой, 3 – двухслойный теплоотвод (поликристаллический алмаз – композиционный материал «Скелетон»), 4 – припой, 5 – медное основание.

При моделировании предполагалось, что температура фланца корпуса транзистора 85 ⁰C, размеры теплоотвода 10*10 мм, размеры кристалла 2*2 мм, мощность, подведенная к кристаллу - 60Вт.

Результаты моделирования приведены на рисунках 2 - 4.

Рисунок 2. Зависимость теплового сопротивления транзистора от толщины композита.

Рисунок 3. Зависимость теплового сопротивления транзистора от толщины слоя поликристаллического алмаза на поверхности композита.

Толщина слоя поликристаллического алмаза на поверхности композита, мкм

Рисунок 4. Зависимость температуры кристалла транзистора от толщины слоя поликристаллического алмаза на поверхности композита.

Результаты моделирования показывают, что:

- величина R_T мощного транзистора с теплоотводом из AKK «Скелетон» без нанесения на него пленки поликристаллического алмаза падает с уменьшением толщины композита. Однако, из практических и технологических соображений мы остановились на толщине AKK «Скелетон» равной 1,0 мм;

- величины теплового сопротивления и температуры кристалла транзистора достигают минимальных значений при толщине пленки поликристаллического алмаза равной 150 мкм.

Для исследования теплофизических и электроизоляционных характеристик транзисторных сборок с теплоотводом из двухслойной композиции поликристаллический алмаз – АКК «Скелетон» были подготовлены образцы композиционного материала с составом: алмаз 59% об., карбид кремния 34% об., кремний 7% об. размером 10 х 10 мм и толщиной 3 мм. Двухстадийная термохимическая обработка материала проводилась в водородной печи САМсо B16

[7]. В результате пластина из композиционного материала была утонена до величины 1,0 мм, а шероховатость ее поверхности составила около 2 мкм.

Пленки поликристаллического алмаза на поверхность композита выращивались методом химического осаждения из газовой смеси метана и водорода при воздействии СВЧ-разряда на установке АТВ-127. Толщина пленки задавалась скоростью роста и продолжительностью времени осаждения. Термошлифовка поверхности пленки поликристаллического алмаза проводилась по технологии, описанной в [8].

Далее на поверхность пленки поликристаллического алмаза магнетронным распылением в вакууме последовательно наносились плёнки W и Ni. Толщина каждого слоя 0,2 мкм. Затем проводилось покрытие гальваническим золотом толщиной 3 мкм.

На поверхность полученного теплоотвода монтировался кремниевый кристалл транзистора с помощью твердого эвтектического сплава золото-германий при температуре 420 ⁰С толщиной 0,02 мм.

Для измерения величины R_T использовался автоматизированный измерительанализатор тепловых характеристик Л2-109 [9].

В Таблице 1 приведены результаты измерения теплового сопротивления R_T изготовленных транзисторных сборок.

	Таблица 1. Параметры образцов
Толщина слоя алмаза d, мкм	Тепловое сопротивление Rт, К/Вт
0	1,6
50	1,4
100	1,3
150	1,2
200	1,2

Также измерялось сопротивление электрической изоляции между кристаллом транзисторной сборки и ее металлическим фланцем при напряжении 3кВ. При толщинах пленки поликристаллического алмаза более 50 мкм транзисторные сборки успешно выдержали испытания на электропрочность.

3. Заключение

Таким образом, теоретически и экспериментально показано, что нанесение на поверхность теплоотвода из АКК «Скелетон» пленки поликристаллического алмаза уменьшает тепловое сопротивление транзистора и увеличивает электрическое сопротивления между кристаллом транзистора и металлическим фланцем. При этом толщина пленки поликристаллического алмаза равная 150 мкм является оптимальной.

Список литературы

- Вяхирев В.Б., Дерябкин А.В., Дубкова А.С., Духновский М.П., Федоров Ю.Ю. Исследование теплового сопротивления транзисторных сборок с теплоотводом из поликристаллического алмаза // Сборник докладов Х Всероссийской научно-технической конференции «Электроника и микроэлектроника CBЧ». – 2021. – с. 332 – 336.
- 2. Мальцев П.П. и др. Теплоотводы на поликристаллическом алмазе для мощных СВЧ интегральных схем //Нано- и микросистемная техника. 2016. Т.18. №4. стр. 195-208.
- Воробьев А.А., Воробьва Е.В., Галдецкий А.В., Духновский М.П., Ратникова А.К., Федоров Ю.Ю. Моделирование теплового режима полупроводниковых приборов с различными типами теплоотводов // Электронная техника. – Сер.1., – 2010. – вып. 2. – с. 12-20.
- 4. Глинский И.А., Зенченко Н.В. Расчет теплораспределяющего элемента конструкции для мощных СВЧ-транзисторов //Микроэлектроника. 2015. т. 44. № 4. с. 269-274.

- 5. Катаев С., Сидоров В., Гордеев С. Алмаз-карбидный композиционный материал "Скелетон" для теплоотводов в изделиях электронной техники //Электроника НТБ. 2011. № 3. с.60-64.
- 6. Гордеев С.К., Жуков С.Г., Данчукова Л.В., Экстрем Т.С. Особенности получения композиционных материалов на основе алмаза, карбида кремния и кремния при низких давлениях //Неорганические материалы. 2001. т.37. №6. с.691–696.
- Дерябкин А.В., Куликов Е.Н., Фёдоров Ю.Ю., Гордеев С.К., Корчагина С.Б. Исследование процесса термохимической обработки поверхности композиционного материала алмаз – карбид кремния – кремний // Сборник докладов XII Всероссийской научно-технической конференции «Электроника и микроэлектроника СВЧ». – 2023. – с. 398 – 401.
- Дерябкин А.В., Духновский М.П., Куликов Е.Н., Федоров Ю.Ю. Исследование процессов планаризации поверхности поликристаллического алмаза методом термического растворения в системе алмаз-металл. //Материалы XXIII Международного симпозиума «Нанофизика и наноэлектроника», – 2019. – т.2. – с. 663-664.