# УДК

# Исследование мультиферроидных композитов в СВЧ диапазоне

#### М.А. Мишнёв<sup>1</sup>, А.В. Еськов<sup>1</sup>, А.С. Анохин<sup>2</sup>, И.Л. Мыльников<sup>1</sup>

<sup>1</sup>Санкт-Петербургский государственный электротехнический университет «ЛЭТИ» <sup>2</sup>Санкт-Петербургский национальный исследовательский университет ИТМО

Аннотация: изготовлены мультиферроидные композиты феррита кобальта-титаната бария методом твердофазного синтеза. Проведены измерения передаточных характеристик микрополоскового резонатора, с прилегающим керамическим образцом, в магнитном поле. Полученные характеристики показали отклик исследуемых материалов на магнитное поле в СВЧ диапазоне.

**Ключевые слова:** керамика, мультиферроики, композитные материалы, магнитоэлектрический эффект

## 1. Введение

Композиционные материалы, содержащие пьезоэлектрическую обладают (сегнетоэлектрическую) И пьезомагнитную (ферритную) фазы, магнитоэлектрическим эффектом (MЭ) [1]. Магнитоэлектрический эффект представляет собой изменение намагниченности, вызванное электрическим полем, а также изменение электрической поляризации, вызванное магнитным полем. Благодаря своим нелинейным свойствам, данные структуры привлекательны для различных технологических приложений, таких как датчики, фильтры и носители памяти [2-4]. Кроме этого, в последние годы наблюдается интерес к мультиферроикам в качестве материалов для применения в СВЧ электронике. Стоит отметить, что большинство известных «природных» мультиферроиков по своим свойствам непригодно для использования в СВЧ диапазоне. В связи с этим разработка новых мультиферроидных композитов является актуальным направлением.

### 2. Подготовка образцов

В настоящей работе рассмотрены объемные композиты феррита кобальта титаната бария ((1-х)CoFe<sub>2</sub>O<sub>4</sub>/хBaTiO<sub>3</sub>, CFO/BTO). Керамические образцы были изготовлены методом высокотемпературного твердофазного синтеза. Сводные параметры образцов представлены в таблице 1.

|              |                                                            | <b>Таблица 1.</b> Параметры образцов |               |                            |
|--------------|------------------------------------------------------------|--------------------------------------|---------------|----------------------------|
| Наименование | Структура                                                  | Температура<br>синтеза, °С           | <i>h</i> , мм | <i>s</i> , mm <sup>2</sup> |
| CFO          | CoFe <sub>2</sub> O <sub>4</sub>                           | 1200 °C                              | 0.53          | 101                        |
| CFO70/BTO30  | $0.7 CoFe_2O_4/0.3 BaTiO_3$                                | 1200 °C                              | 0.51          | 103                        |
| CFO50/BTO50  | 0.5CoFe <sub>2</sub> O <sub>4</sub> /0.5BaTiO <sub>3</sub> | 1200 °C                              | 0.52          | 102                        |

Для измерений характеристик в СВЧ диапазоне использовался микрополосковый полосовой фильтр с частотой согласования 2.4 ГГц. Керамический композит в форме диска помещался на фильтр, перпендикулярно которому прикладывалось магнитное поле при помощи электромагнита. Для измерения S-параметров фильтра использовался векторный анализатор цепей «Обзор–804/1». Влияние магнитного поля

на амплитудно-частотную характеристику (АЧХ) материалов, а также сдвиг резонансной частоты от напряженности поля представлены на рисунке 1.



**Рисунок 1.** (а) АЧХ исследуемых материалов с и без магнитного поля. (б) Нормированный сдвиг резонансной частоты от напряженности магнитного поля.

#### 3. Заключение

Для исследуемых объемных образцов проведены измерения коэффициента отражения от частоты S11(f) при различных напряженностях магнитного поля. Сравнение полученных АЧХ показало, что при увеличении напряженности магнитного поля у СFO наблюдается сдвиг резонансного пика вниз по частоте, а у композитов CFO/BTO вверх по частоте. Данное отличие может говорить нам о наличии перекрестных эффектов в композитных материалах в CBЧ диапазоне.

# Список литературы

- 1. Van Suchtelen J. Product properties: a new application of composite materials //Phillips Research Reports. 1972. T. 27. C. 28-37.
- 2. Wang Y. et al. An extremely low equivalent magnetic noise magnetoelectric sensor //Advanced material. - 2011. - T. 23. - №. 35. - C. 4111.
- 3. Jahns R. et al. Microelectromechanical magnetic field sensor based on ΔE effect //Applied Physics Letters. 2014. T. 105. №. 5.
- 4. Dong S. et al. Multimodal system for harvesting magnetic and mechanical energy //Applied Physics Letters. 2008. T. 93. №. 10.