### УДК 621.396.67

# Способ повышения точности проектирования печатных антенн в САПР «*CST Studio Suite*»

А.С. Волошин<sup>1, 2</sup>, Т.Ю. Шумилов<sup>1, 3</sup>

<sup>1</sup>Институт физики им. Л.В. Киренского СО РАН <sup>2</sup>Сибирский федеральный университет <sup>3</sup>АО «НПП «Радиосвязь»

Аннотация: описан способ повышения точности проектирования печатных антенн в САПР «CST Studio Suite». Показано, что детализация сетки разбиения полоскового проводника излучателя в областях концентрации зарядов и токов на резонансной частоте позволяет значительно повысить точность расчета. Показано хорошее согласие рассчитанных по предлагаемой методике с измеренными частотными зависимостями потерь на отражение от входа печатной антенны с проводником прямоугольной формы.

Ключевые слова: печатная антенна, полосковый проводник, метод конечных разностей.

#### 1. Введение

Современные печатные антенны и антенные решётки на их основе моделируются в различных системах автоматизированного проектирования (САПР), в которых реализованы различные высокоточные численные методы. Одним из них является метод конечных разностей в частотной области [1, 2]. В силу своей универсальности данный метод дает достаточно высокую точность решения различных трёхмерных электромагнитных задач относительно резонансных конструкций. Однако указанное преимущество ограничено шириной полосы частот, к которым привязаны технологии разбиения модели на элементарные ячейки. Помимо узкополосности к недостаткам данного метода можно также отнести требования к форме самих этих ячеек, которые должны быть похожи на правильные тетраэдры (поле не должно существенно меняться в пределах ячейки ни в одном из направлений по отношению к двум другим), и большое количество элементарных объёмных ячеек (в виде прямоугольных параллелепипедов или тетраэдров), на которые разбивается модель и объём вокруг неё, если задача является открытой (антенны). Именно в узлах этих ячеек и рассчитываются искомые компоненты электромагнитных полей, а, значит, точность разбивки модели на элементарные ячейки при использовании данного метода существенно влияет на результат моделирования [1, 2]. Очевидно, что высокоточные расчёты требуют больших машинных и временных затрат, поэтому перед началом параметрического синтеза конструкции приходится искать оптимальный вариант разбиения модели, который состоит в том, чтобы достичь требуемой точности расчёта при минимальных временных затратах на сам расчёт.

В связи с этим в современных системах проектирования, таких как, например, «*CST Studio Suite*», помимо пробивки деталей конструкции и окружающего её пространства с помощью однородной сетки предусмотрена возможность пробивки локальных областей модели с помощью локальных сеток, отличающихся от общей (опция «local mesh»). В этом случае обозначать критичные области разбиения и соответствующие размеры ячеек на них можно самостоятельно. Более того, в рамках повышения точности расчёта в «*CST Studio Suite*» имеется режим адаптивного изменения размеров ячеек («*Adaptive Tetrahedral mesh refinement*»), с использованием которого расчётное ядро программы самостоятельно обнаруживает области, где с целью повышения точности расчёта сетку разбиения необходимо переразбить

поточнее. В ходе расчёта программа с каждой новой итерацией сама меняет сетку разбиения модели, пробивая соответствующие критичные области с более мелкой сеткой по отношению к начальной конфигурации. Переразбиение производится до тех пор, пока критерий сходимости решения не будет достигнут. Отметим, что последняя технология проектирования, несмотря на высокую точность и достоверность расчёта, зачастую требует гораздо больше времени на расчёт, чем первая.

В отличие от неё использования опции «*local mesh*» часто оказывается достаточно для того, чтобы быстро и точно получить достоверный результат. Важно отметить, что здесь априори важно знать, где именно в проектируемой модели конструкции распределения токов и зарядов максимальны и наиболее сильно изменяются по величине. Исходя из этого и выбирается предельный размер ячеек в этих областях.

Анализ современных работ по проектированию простых конструкций печатных антенн и устройств показал, что разработчики, как правило не стремятся к высокому качеству моделирования рассматриваемых конструкций, что, очевидно связано лишь с качественной оценкой полученных результатов [3–7]. Как показал анализ указанных работ, ошибки проектирования моделей, допущенные в ходе моделирования, часто оказываются весомыми даже в случае элементарных излучателей. Это проявляется в том, что ширина их рабочей полосы является соизмеримой, а зачастую и больше величины ухода резонансной частоты готового макета по отношению к расчётной модели. В случае моделирования составных антенн, например, печатных антенн с круговой поляризацией, а также различных печатных антенных решёток, где помимо печатных излучателей в составе антенн используются различные балансные устройства (симметрирующие устройства, мосты, делители) и фазовращатели, этот факт проявляется ещё сильнее. Таким образом, повышение качества проектирования печатных антенн с целью минимизации трудозатрат на последующую их настройку после изготовления является важной и актуальной задачей.

В работе показана методика использования технологии локальных сеток при проектировании печатных антенн с прямоугольным излучателем в САПР «*CST Studio Suite*», позволяющая форсированно получить высокоточный итоговый результат при моделировании и не требующая последующей настройки изделия после изготовления.

### 2. Методика проектирования микрополосковых излучателей и экспериментальные результаты

Для отработки методики была взята готовая конструкция микрополосковой антенны с излучателем прямоугольной формы, которая была создана для исследования диаграмм направленности микрополосковых антенн, а также использования в качестве измерительной. Антенна настроена на частоту  $f_0 = 2.06$  ГГц и имела ширину  $\Delta f/f_0 = 0.6\%$  по уровню  $S_{11\text{max}} = -10$  дБ. Схема антенны и её фотография представлены на рисунке 1. Подложка 2 конструкции антенны выполнена из материала F4BM255 ( $\varepsilon_r = 2.55$ , tg $\delta = 0.0022$ ) и имела толщину h = 2 мм. Толщина металлизации (медь) была равна t = 10 мкм. Размеры подложки выбирались таким образом, чтобы уменьшить затекание паразитных токов на обратную сторону подложки и, следовательно, уменьшить излучение антенны в обратном направлении. В результате длина и ширина подложки составили  $L_{\Sigma} = W_{\Sigma} = 150$  мм.

Ширина и длина полоскового излучателя 1 были равны соответственно l = 47 мм и w = 10 мм. Мощность на излучатель антенны подавалась через припаянный к заземляемому основанию 3 коаксиальный *sma*-разъём 4 и идущий от него к излучателю штырь, продетый сквозь подложку. Точка подключения находилась на продольной оси излучателя на расстоянии  $l_c = 21.2$  мм от его ближайшего края.



**Рисунок 1.** Микрополосковая антенна с излучателем прямоугольной формы (*a*): 1 – излучатель; 2 – подложка; 3 – заземляемое основание; 4 – коаксиальный разъём, и фотография изготовленного образца антенны (*б*).

Для представленной на рисунке 1 антенны была создана идентичная модель в САПР «*CST Studio Suite*». На рисунке 2 (*a*) показана итоговая сетка разбиения модели, на рисунке 2 ( $\delta$ ) – результаты расчёта и измерений амплитудно-частотных характеристик на входе антенны ( $S_{11}$ ). Измерения проводились с помощью векторного анализатора цепей «*ZVL*» фирмы «*Rohde Schwarz*» после предварительной процедуры калибровки питающего кабеля.



**Рисунок 2.** Фрагмент модели микрополосковой антенны с прямоугольным печатным излучателем в САПР «*CST Studio Suite*» с сеткой разбиения (*a*) и результаты расчёта и измерений характеристики  $S_{11}$  на входе антенны (б).

Как видно, на рисунке 2 (б) линиями показаны несколько расчетных зависимостей характеристики  $S_{11}$  на входе антенны (цифры 1 – 4), точками – аналогичная зависимость 5, измеренная для реализованного макета антенны с помощью векторного анализатора цепей. Здесь цифрой 1 обозначена кривая, соответствующая модели, где сетка задаётся исключительно через общее меню разбиения модели («*Global mesh*») и значение относительной диэлектрической проницаемости равнялось  $\varepsilon_r = 2.55$ , согласно паспортным данным материала F4BM255. Цифрой 2 на рисунке обозначена

расчётная характеристика  $S_{11}$  для модели с аналогичной сеткой разбиения, где  $\varepsilon_r = \varepsilon_{3\kappa c \pi} = 2.47$  — рассчитанное значение относительной диэлектрической проницаемости подложки, полученное путём обработки данных измерений, проведённых для готовой модели (рисунок 1 б). Значение  $\varepsilon_{3\kappa c \pi} = 2.47$  получено из формулы для резонансной частоты микрополоскового полуволнового резонатора:

$$f_0 = \frac{c}{2l\sqrt{\varepsilon_{s\phi}}}, \ \varepsilon_{s\phi} \sim \varepsilon_r \quad \Leftrightarrow \varepsilon_{s\kappa c \Pi} = \varepsilon_r \frac{f_0^2}{f_{s\kappa c \Pi}^2}, \tag{1}$$

где  $\varepsilon_{9\phi}$  – эффективная диэлектрическая проницаемость микрополосковой линии, на основе которой создан излучатель,  $f_{3\kappa cn}$  – резонансная частота готового макета антенны, наблюдаемая на графике измеренной характеристики  $S_{11}$ . Указанная постобработка является актуальной в связи с тем, что в действительности всем диэлектрикам на СВЧ характерна частотная дисперсия своих электродинамических параметров, которая в данном случае сказалась на уменьшении величины  $\varepsilon_r$  с частотой.

Цифрой 3 на графике, представленном на рисунке 2 (б), указана расчётная характеристика  $S_{11}$  для модели, где относительная диэлектрическая проницаемость подложки равна  $\varepsilon_r = \varepsilon_{3\kappa c \pi} = 2.47$ , но сетка разбиения модели модифицирована по отношению к исходной путём доразбивки локальных областей, как показано на рисунке 2 (*a*). В качестве локальных областей, выбран внешний край по периметру полоскового излучателя шириной  $w_{loc} = 2t$ , и область подложки в окрестности полоскового проводника, выступающая за его пределы на две толщины подложки *h*. Именно в указанных областях компоненты электромагнитного поля изменяются наиболее динамично от точки к точки в каждый момент времени. Эти факты хорошо известны. В поперечном сечении полоскового проводника шириной *w* плотность поверхностного тока в общем случае изменяется по закону [8]:

$$j_s(x) = \frac{2I}{\pi w} \left[ 1 - (2x/w)^2 \right]^{-1/2},$$
(2)

где w – ширина полоскового проводника, а I – величина полного тока, текущего в этом проводнике. Координата x здесь отсчитывается от середины полоскового проводника. Из формулы (2) видно, что предельная плотность тока здесь достигается именно на краях полоскового проводника, а, значит, именно эти области и следует разбивать точнее, чем область середины проводника. Отметим, что формула (2) не учитывает толщину полоскового проводника и идеально описывает проводники нулевой толщины. В работе [8] дано решение для полосковых проводников конечной толщины и показано, что величина плотности тока на его краях может быть оценена через толщину проводника. В связи с этим в данной работе в качестве локальной области выбран именно периметр полоскового излучателя – «ободок» шириной несколько толщин проводника t, с разбитый с шагом, равным толщине проводника.

Что касается второй критичной для повышения точности расчёта области, то это области сред возле полоскового проводника. В несимметричной полосковой линии, на основе которой и построена рассматриваемая в работе печатная антенна, важной является область подложки выступающая за пределы полоскового проводника как минимум на величину своей толщины, где плотность силовых линий напряжённостей электрического и магнитного полей максимальна [9]. Более того, на резонансной частоте нижайшей (основной) моды торцевые области микрополоскового резонатора выступают как концевые емкости, притом, неоднородные по своей структуре. В связи с этим эти области также необходимо разбить поточнее. В данной работе предельный шаг ячеек в опции «local mesh» задан равным  $0.2 \cdot h$ .

На рисунке 2 (б) видно, что ни одна из представленных выше расчётных характеристик обратных потерь не совпадает с аналогичной характеристикой, измеренной на входе антенны. Из них, характеристика 3 лучше всего описывает

реализованную модель антенны, что проявляется в наилучшем совпадении графиков 3 и 5 на рисунке 2 (б). В связи с этим, цифрой 4 на рисунке показана расчётная характеристика  $S_{11}$  для модели антенны с модифицированной сеткой разбиения, где относительная диэлектрическая проницаемость подложки равна  $\varepsilon_r = \varepsilon'_{3\kappa cn} = 2.468$ . Это значение получено также путём расчёта из формул (1) с точностью до 0.001 в отличие от  $\varepsilon_r = \varepsilon_{3\kappa cn} = 2.47$ , соответствующей кривой 3. Как видно из графиков, представленных на рисунке 2 (б), именно 4-ая расчётная характеристика лучше остальных совпадает с измеренной характеристикой  $S_{11}$  на входе антенны, а, значит, максимально близко описывает реализованную конструкцию представленной печатной антенны.

### 3. Заключение

Показано, что использование локальной сетки на краях полоскового излучателя, где изменение плотности токов (на боковых ребрах) и зарядов (на торцевых ребрах) максимальны, позволяет достичь высокой точности при проектировании печатной антенны. В связи с этим можно с уверенностью сказать и о высокой точности расчёта соответствующих диаграмм направленности представленной антенны.

Применение представленного способа также позволило определить реальное значение относительной диэлектрической проницаемости материала подложки (F4BM255) с точностью до 0.001. В результате, на резонансной (рабочей) частоте антенны ( $f_0 = 2.06 \ \Gamma \Gamma \mu$ ) оно составило  $\varepsilon_r = 2.468$ . По сравнению с заявленным в паспорте данных материала F4BM255 ( $\varepsilon_r = 2.55$ ) относительное изменение значения  $\varepsilon_r$  составило 3.1%. Это привело к относительному изменению резонансной частоты антенны в расчётной модели на 1.6%, что почти в 3 раза превосходит относительную ширину рабочей полосы антенны.

Таким образом, полученные результаты позволяют сделать вывод о том, что представленный в работе способ проектирования печатных антенн в САПР «*CST Studio Suite*», который заключается в указании и перепробивке локальных областей модели, позволяет не только повысить точность проектирования, но и определять электродинамические параметры материалов на СВЧ резонансным методом.

## Работа выполнена в рамках научной тематики Госзадания Института Физики им. Л.В. Киренского ФИЦ КНЦ СО РАН.

#### Список литературы

- 1. Гринёв А.Ю. Численные методы решения прикладных задач электродинамики: учебное пособие для вузов / Гринев А.Ю. М.: Радиотехника, 2012.
- 2. Банков С.Е., Курушин А.А. Электродинамика для пользователей САПР СВЧ. М.: Солон-Пресс, 2018.
- 3. Liang J. et al. Study of a Printed Circular Disc Monopole Antenna for UWB Systems // IEEE Transactions on Antennas and Propagation. 2005. V. 51. №. 11. P. 3500-3504.
- Hossain M.J. et. al. Design of a patch Antenna for Ultra Wide Band Applications // Microwave and Optical Technology Letters. – 2016. – V.58. – № 9. – P. 2152-2156.
- 5. Agarwal K. et. al. Dual-Band Circularly Polarized Stacked Microstrip Antenna over RIS for GPS Applications // IEEE International Wireless Symposium. 2013. P. 1-4.
- Rao K.S. et. al. Compact Broadband Asymmetric Slit Circularly Polarized Microstrip Patch Antenna for GPS and GLONASS Applications // IEEE International Conference on Antenna Innovations & Modern Technologies for Ground, Aircraft and Satellite Applications. – 2017. – P. 1-3.
- 7. Elshikh T. et. al. A Low Cost Circular Polarized Antenna Array for GPS Receivers // 13th European Conference on Antennas and Propagation. 2019. P. 1-6.
- Вендик О.Г., Попов А.Ю. Распределение тока в поперечном сечении и погонное сопротивление сверхпроводящей микрополосковой линии // Журнал технической физики. – 1993. – Т. 63. – № 7. – С. 1-9.
- 9. Тюрнев В.В. Теория цепей СВЧ: учебное пособие / Тюрнев В.В. Красноярск: ИПЦ КГТУ, 2003.