УДК 621.317.7.023

Система автоматизированного тестирования аттенюаторов, фазовращателей и переключателей Х-диапазона с цифровым управлением на пластине

А.И. Торгованов

АО «НПП «Салют»

Аннотация: рассматривается система автоматизированного тестирования CBЧ-микросхем Х-диапазона с цифровым управлением, построенная на базе векторного анализатора цепей. Обсуждаются вопросы разработки блока управления для тестируемых монолитных интегральных микросхем CBЧ, и программное обеспечение, написанное на языке Python.

Ключевые слова: автоматизация, измерения на СВЧ, аттенюатор, фазовращатель, переключатель, АФАР, радар, радиолокация, векторный анализатор, зондовая станция, микроэлектроника, арсенид галлия

1. Введение

Активные фазированные решетки (АФАР) являются наиболее перспективным направлением развития радиолокации. Современные АФАР состоят из десятков и сотен активных элементов, в каждом из которых состоит есть приёмопередающий модуль. Синтез диаграммы направленности и электронное сканирование осуществляется за счет изменения амплитудно-фазовых соотношений на элементах решётки, поэтому каждый модуль оснащён перестраиваемым аттенюатором и фазовращателем с цифровым управлением. Производство новых радаров с АФАР и техническое обслуживание существующих требует организацию серийного выпуска тысяч аттенюаторов и фазовращателей в месяц. Выпуск изделий в таких масштабах требует применение автоматизации измерений при выходном контроле.

2. Автоматизированная измерительная система

АФАР состоит из множества приемо-передающих модулей, в состав каждого, из которых входит усилитель мощности, малошумящий усилитель, смеситель, цифровой фазовращатель, аттенюатор и переключатель (рисунок 1). Аттенюаторы и фазовращатели с цифровым управлением используются для синтеза диаграммы направленности, как на приём так и на передачу. От технологического разброса параметров цифровых фазовращатетелей и аттенюаторов зависит насколько точно расчетная диаграмма направленности РЛС будет совпадать с реальной, точность определения направления на объект, разрешение по дальности, качество подавления активных и пассивных помех. Поэтому к числу необходимых для тестирования электрических характеристик монолитных СВЧ микросхем добавлены параметры, описывающие поведение на основе статистики: минимальные, максимальные, средние значения модулей и фаз, а также среднеквадратичные ошибки их установки.

Основные требования к разрабатываемой системе:

- Производительность;
- Точность измерений;
- Размер файлов измерений;
- Сквозной цикл проектирования, сравнение измерений с моделированием.

Основной функционал автоматизированной измерительной системы:

• Управление перемещениями столика зондовой станции;

- Управление прецизионным источником-измерителем;
- Управление переключением состояний модуля;
- Измерение *S*-параметров и ток потребления по цепям питания для каждого из состояний МИС;
- Расчёт на основе измеренных *S*-параметров характеристики модуля;
- Запись данных измерения МИС в файл, и протокол измерений пластины в таблицу;
- Сортировка кристаллов по критерию годен-негоден, построение карты пластины.

Рисунок. 1. Типовая структура приёмо-передающего модуля активной фазированной решётки

При разработке первой версии системы упор был сделан на скорость разработки и корректность работы алгоритмов. Из всех тестируемых монолитных микросхем самый длинный цикл измерений 2,4 с у 5-битного аттенюатора. Таким образом оценка производительности измерительной системы даёт 1,000 кристаллов за 40 мин., а с учётом времени требующегося на прогрев, калибровку и первоначальную настройку системы 140,000 кристалов/мес. При этом существует большой резерв для повышения производительности системы с использованием существующего оборудования за счёт: отключения экранов измерительных приборов, перехода от универсальных функций для управления оборудованием к оптимизированным под конкретную задачу, использования аппаратного триггера вместо программного, обмена данными с приборами в бинарном формате. Однако на данном этапе существования проекта дополнительные трудозатраты на оптимизацию производительности не имею смысла в виду того, что она в несколько раз превышает возможности производства.

Таблица 1. Погрешност	и используемых векторных	анализаторов цепей
-----------------------	--------------------------	--------------------

	Keysigh, R&S, Planar	Микран
KCBH = 2	0,02 <u>/</u> 2,32°	0,05 <u>/</u> 4,72°
S21 = -25 2 дБ	0,11 дБ <u>/</u> 1,15°	0,22 дБ <u>/</u> 3,85°

Абсолютная погрешность измерений по постоянному току Keysight B2912A [5] составляет 3,25 нА, при том, что фактические токи потребления по цепям питания годных кристаллов по цепям питания находятся в диапазоне 1... 10 мкА, а максимальное значение тока не должно превышать 100 мА. Погрешности измерения остальных характеристик СВЧ-модулей определяются погрешностью измерения *S*-параметров на векторном анализаторе цепей (таблица 1) [1, 2, 3, 4].

Измерительная система сохраняет *S*-матрицы состояний модуля в файл. Рассчитанные на основе *S*-параметров характеристики, токи потребления по цепям управления, координаты кристаллов на пластине записываются в таблицу *.xlsx. Измеряемый диапазон значений S-параметров в линейном масштабе от тысячных до тысяч, для того чтобы обеспечить минимальный размер файла без потери точности, выбран следующий формат представления комплексных чисел модуль-дБ, фаза-градусы, количество знаков после запятой 2, количество частот сведено к минимуму с помощью сегментированой развёртки. В данном случае уменьшение количества точек оправданно, так как коэффициенты передачи и отражения являются плавными функциями частоты и определяются конструкцией МИС, что позволяет в случае необходимости интерполировать значения. За счет описанных выше решений удалось уменьшить размер файлов, описывающих пластину, в 10 раз относительно проекта заказчика.

Рисунок 2. Пример хранения данных о пластине.

Современные САПР и измерительные приборы поддерживают большое количество файлов для обмена данными, исходя из задачи была выбрана разновидность формата Generalized Measurement Data Interchange Format (*.mdf), которая объединяет несколько 2-портовых матриц рассеяния в зависимости от переменной. Для испытуемых МИС СВЧ значения переменных — это состояния из таблицы истинности. Такое решение позволило автоматически подгружать большие объёмы данных в САПР разработчика, для коррекции проекта.

3. Блок управления

Далее на примере 4-битного фазовращателя рассмотрен принцип работы и конструкция блока управления в автоматизированной системы тестирования СВЧ-модулей.

Несмотря на обилие различных цифровых модулей управления и источников питания, в соответствии с требованиями технического задания, встал вопрос одновременного измерения тока потребления по цепям управления не превышающем 0,5 мА и конвертации ТТЛ уровней 0/5 В в негативную логику –5/0 В. Задача была решена при помощи блока управления (рисунок 3) на основе аналогового КМОП мультиплексоров серии КР561КП5 (аналог CD4053B [6, 7]), состоящего из трёх аналоговых ключей, и прецизионного измерительного источника Keysight B2912A [5].

При подаче 0 В на вход S1 мультиплексора ключ коммутирует управляющий вход Упр1 фазовращателя к выходу прецизионного измерительного источника B2912A (рисунок 3), с которого подается напряжение – 5 В, что соответствует логическому 0 в негативной логике. При подаче 5 В на вход S1 мультиплексора ключ коммутирует

управляющий вход Упр1 фазовращателя на землю с потенциалом 0 В, что соответствует логической 1 в негативной логике. Аналогично для остальных каналов управления. Управляющие ТТЛ сигналы подаются с цифрового GPIO интерфейса на задней панели источника B2912A. Задание управляющих кодовых последовательностей, измерение токов и напряжений в цепях питания, и синхронизация источника с анализатором цепей и зондовой осуществляются программно по LAN интерфейсу с помощью SCPI-команд. Во время испытаний максимально зарегистрированный автором ток потребления по цепям управления не превышал 2 мкА погрешностью ± (0,025 % + 1,5 нА) при подаче логических нулей –5 В на все входы фазовращателя. Сопротивление открытого аналогово ключа составляет порядка 100 Ом, а сопротивление цепи затвора полевого транзистора 1 МОм, следовательно, погрешностью вносимой оснасткой можно пренебречь.

Блок управления (рисунок 3) состоит из четырёх микросхем КР561КП5, AC/DC преобразователей и RC-фильтров питания. Позволяет управлять и измерять токи потребления для МИС с 10-битным управлением, совместим с низкочастотными зондами производства НИИПП.

Рисунок 3. Внешний вид модуля управления и схема поясняющая принцип его работы на примере ячейки фазовращателя.

4. ПО на языке Python

Python – это объектно-ориентированный, интерпретируемый и высокоуровневый язык с простым синтаксисом, мощными функциями и большим количеством библиотек, расширяющих его функционал. Позволяет быстро создавать сложные, удобочитаемые приложения минимальными усилиями. Python свободно распространяемый язык с открытым исходным кодом. Язык стандартизирован, что гарантирует стабильную работу приложений.

При написании ПО для автоматизированной системы были использованы библиотеки: *NumPy* – базовый пакет для научных вычислений; *SciPy* – набор математических функций и алгоритмов; *Matplotlib* – библиотека визуализации данных; *Pandas* – библиотека работы с чистовыми таблицами; *pyvisa* – Python оболочка для работы с драйверами измерительных приборов; *SentioProberControl* – библиотека управления зондовой станцией MPI. За счет использования Python с набором библиотек удалось в течении полугода написать ПО для автоматизации измерений и разбраковки кристалла.

Список литературы

- 1. Keysight [Электронный ресурс]. Режим доступа: <u>https://www.keysight.com/</u>
- 2. Rohde & Schwarz [Электронный ресурс]. Режим доступа: <u>https://www.rohde-schwarz.com/</u>
- 3. Планар [Электронный ресурс]. Режим доступа: <u>https://planarchel.ru/</u>
- 4. Микран [Электронный ресурс]. Режим доступа: <u>https://www.micran.ru/</u>

- 5. Datasheet, B2900B/B2900BL Series Precision Source/Measure Unit // Keysight Technologies, 2020 2022, USA, November 8, 2022, 3120-1466.EN.
- 6. Application note G007, MGS Series Monolithic GaAs Switches // Hewlett Packard, 1992.
- 7. Datasheet, CD405xB CMOS Single 8-Channel Analog Multiplexer/Demultiplexer with Logic-Level Conversion // Texas Instruments, August 1998.
- 8. python [электронный ресурс]. Режим доступа: <u>https://www.python.org/</u>.
- 9. NumPy Documentation [Электронный ресурс]. Режим доступа: <u>https://numpy.org/doc/sta-ble/user/whatisnumpy.html</u>