Новая топология двухшлейфного направленного ответвителя с компенсацией влияния неоднородностей сочленений микрополосковых линий

А.М. Кубышкин, Д.В. Холодняк

Санкт-Петербургский государственный электротехнический университет «ЛЭТИ»

Аннотация: Исследуется влияние неоднородностей сочленений микрополосковых линий на частотные характеристики двухшлейфных направленных ответвителей, делящих мощность между выходными плечами в различном соотношении. Предложена новая топология устройства, менее подверженная влиянию неоднородностей и позволяющая легко его компенсировать, что упрощает и ускоряет проектирование таких направленных ответвителей.

Ключевые слова: направленные ответвители, микрополосковые линии, сочленения, неоднородности.

1. Введение

Направленные ответвители (НО) широко применяются в технике СВЧ в качестве двухканальных делителей-сумматоров мощности при построении разделителей частотных каналов (мультиплексоров), проходных фазовращателей, схем питания многоэлементных антенн, и т.п. Одним из наиболее распространенных типов НО является двухшлейфный НО, который состоит из пары четвертьволновых отрезков линий передачи с волновым сопротивлением Z_{01} и пары соединяющих их четвертьволновых шлейфов с волновым сопротивлением Z_{02} (рисунок 1). Несмотря на простоту конструкции, практическая реализация двухшлейфного НО осложняется необходимостью учета и компенсации влияния неоднородностей структуры, образующихся в местах Тобразных сочленений линий передачи. Влияние этих неоднородностей может приводить к ухудшению согласования входов НО, сдвигу максимумов характеристик передачи мощности в выходные плечи и минимумов характеристик отражения и развязки относительно центральной частоты, на которую проектируется устройство, и относительно друг друга [1], [2].

Рисунок 1. Эквивалентная схема двухшлейфного НО.

Компенсация влияния неоднородностей требует коррекции длины и ширины отрезков линий передачи и шлейфов, составляющих НО [1], [2]. Потребность в коррекции геометрических параметров усложняет и замедляет процесс разработки топологического решения по реализации НО с заданными частотными характеристиками. Влияние неоднородностей особенно заметно на высоких частотах, когда физическая длина четвертьволновых отрезков линий передачи и шлейфов становится сопоставимой с их шириной. Для компенсации влияния неоднородностей в миллиметровом диапазоне длин волн может потребоваться многофакторная коррекция топологии НО с использованием оптимизационных процедур [3], [4]. В настоящей работе исследуется влияние неоднородностей на частотные характеристики двухшлейфных НО при различной организации сочленений микрополосковых линий (МПЛ) (рисунок 2). Предложена новая топология НО (рисунок 2, β), которая менее чувствительна к влиянию неоднородностей и позволяет легко его компенсировать. Преимущество новой топологии перед традиционными решениями демонстрируется при помощи результатов электродинамического моделирования на примерах НО с центральной частотой 7 ГГц и различным коэффициентом деления мощности, выполненных на подложке из поликора ($\varepsilon_r = 9.8$; tg(δ) = 0,0002) толщиной 1 мм.

Рисунок 2. Варианты топологии двухшлефного НО с различной организацией сочленений МПЛ: (а) внахлест; (б) встык, традиционный вариант; (в) встык, новый вариант.

2. Частотные характеристики НО с различной организацией сочленений МПЛ

Коэффициент деления мощности – отношение мощностей в выходных плечах НО при условии, что все плечи нагружены на согласованные нагрузки. Коэффициент деления мощности обычно представляют в виде отношения целых чисел: m = 1:1, 2:1, 3:1 и т. д. Значения волнового сопротивления четвертьволновых отрезков линий передачи и шлейфов, образующих двухшлейфный НО, связаны с коэффициентом деления следующими соотношениями: $Z_{01} = Z_0 \sqrt{m/(m+1)}$, $Z_{02} = Z_0 \sqrt{m}$, где Z_0 – волновое сопротивления генератора [5]. В Таблице 1 приведено соотношение мощностей в выходных плечах исследуемых НО, а также расчетные значения их электрических и геометрических параметров при $Z_0 = 50$ Ом и выбранных значениях центральной частоты, диэлектрической проницаемости и толщины подложки.

т	P_{2}/P_{1}	P_{3}/P_{1}	$10\lg(P_2/P_1),$ дБ	$10lg(P_3/P_1),$ дБ	Z01, Ом	Z02, Ом	<i>w</i> 1, мм	W2, ММ	<i>l</i> 1, мм	<i>l</i> 2, мм
1:1	1/2	1/2	-3,01	-3,01	35,4	50,0	1,86	0,98	3,92	4,08
2:1	2/3	1/3	-1,76	-4,77	40,8	70,7	1,46	0,42	3,98	4,24
3:1	3/4	1/4	-1,25	-6,02	43,3	86,6	1,30	0,22	4,00	4,32

Таблица 1. Расчетные параметры двухшлейфных НО с центральной частотой 7 ГГц и различным коэффициентом деления мощности на подложке из поликора толщиной 1 мм

На рисунке 3 представлены результаты электродинамического моделирования АЧХ и ФЧХ для трех вариантов топологии двухшлейфного НО (рисунок 2) с расчетными значениями геометрических параметров из Таблицы 1. У традиционных топологических решений двухшлейфного НО (рисунок 2, *a* и *б*) влияние неоднородностей сочленений МПЛ выражено сильнее, чем у нового варианта топологии, изображенного на рисунке 2, *в*. В последнем случае максимумы характеристик передачи мощности в выходные плечи и минимумы характеристик отражения и развязки меньше сдвинуты относительно друг друга и относительно целевой центральной частоты (рисунок 3, *в*), и, следовательно, компенсация такого сдвига может быть осуществлена более просто.

Рисунок 3. АЧХ двухшлейфных НО с расчетными значениями геометрических параметров с учетом влияния неоднородностей (сплошные линии) при различной организации сочленений МПЛ (рисунок 2) в сравнении с АЧХ идеального НО с *m* = 1:1 (пунктир): (a) – вариант топологии «*a*»; (б) – вариант топологии «*б*»; (в) – вариант топологии «*в*».

Для получения АЧХ и ФЧХ, близких к целевым, в новом варианте топологии НО достаточно скорректировать длины МПЛ (рисунок 4). Значения длин МПЛ после коррекции, а также их абсолютные и относительные изменения приведены в Таблице 2. Несмотря на то, что для случаев m = 2:1 и 3:1 при коррекции только длин МПЛ не обеспечиваются близкие к идеальным согласование и развязка на центральной частоте, рабочая полоса частот НО, измеряемая по уровню –20 дБ, и характеристики деления мощности в этой полосе, тем не менее, близки к соответствующими характеристикам идеальных НО. Разность фаз волн в выходных плечах НО также практически идентична характеристикам идеальных НО, хотя абсолютные значения фаз различаются вследствие влияния неоднородностей сочленений (рисунок 4).

Следует отметить, что в традиционных вариантах топологии HO, показанных на рисунках 2, *а* и *б*, коррекция только длин МПЛ, не позволяет в такой же мере компенсировать влияние неоднородностей сочленений даже в случае m = 1:1 (рисунок 5). При этом необходимое деление мощности обеспечивается только на центральной частоте и только при использовании варианта топологии «*б*». Для получения целевых АЧХ в полосе частот в обоих традиционных вариантах топологии НО необходимо корректировать значения не только длины, но и ширины МПЛ.

Рисунок 4. АЧХ и ФЧХ двухшлейфных НО с вариантом топологии *«в»* после коррекции значений длины МПЛ (сплошные линии) в сравнении с АЧХ и ФЧХ идеальных НО с различным коэффициентом деления мощности (пунктир): (a) – m = 1:1; (b) – m = 2:1; (b) – m = 3:1.

т	<i>l</i> 1', мм	<i>l</i> 2', MM	Δ <i>l</i> 1, MM	Δ <i>l</i> 2, MM	Δ <i>l</i> 1/ <i>l</i> 1, %	$\Delta l_2/l_2,$ %				
Топология «а»										
1:1	3,92	5,96	0	+1,88	0	+46,1				
Топология «б»										
1:1	3,50	2,58	-0,42	-1,5	-10,7	-36,8				
Топология «в»										
1:1	4,06	2,96	+0,14	-1,12	+3,6	-27,4				
2:1	4,82	3,54	+0,84	-0,70	+21,1	-16,5				
3:1	5,04	3,94	+1,04	-0,38	-0,38 +26,0					

Таблица 2. Значения длин МПЛ в составе двухшлейфных НО после коррекции

Рисунок 5. АЧХ двухшлейфных НО с традиционными вариантами топологии после коррекции значений длины МПЛ (сплошные линии) в сравнении с АЧХ идеального НО с m = 1:1(пунктир): (a) – вариант топологии «*a*»; (б) – вариант топологии «*б*».

В новом варианте топологии НО (рисунок 2, *в*) коррекция значений ширины МПЛ позволяет дополнительно улучшить АЧХ и ФЧХ устройства, как показано на рисунке 6. При этом в отличие от вариантов топологии «*a*» и «*б*», для которых требуется корректировать значения ширины обеих пар МПЛ (w_1 и w_2) [1], [2], в варианте «*в*» можно обойтись коррекцией только параметра w_1 . При коррекции значений ширины МПЛ их длины могут потребовать небольшой дополнительной подстройки. В таблицу 3 сведены данные о геометрических параметрах рассматриваемых НО после коррекции значений длины и ширины МПЛ.

Рисунок 6. АЧХ и ФЧХ двухшлейфных НО с вариантом топологии «*в*» после коррекции значений длины и ширины МПЛ (сплошные линии) в сравнении с АЧХ и ФЧХ идеальных НО (пунктир): (a) – m = 2:1; (б) – m = 3:1.

m	<i>l</i> 1', мм	<i>l</i> 2', мм	Δ <i>l</i> 1, мм	Δ <i>l</i> 2, мм	Δ <i>l</i> ₁ / <i>l</i> ₁ , %	Δ <i>l</i> ₂ / <i>l</i> ₂ , %	w1', мм	w2', мм	Δ <i>w</i> 1, мм	∆ <i>w</i> 2, мм	$\frac{\Delta w_1/w_1}{\frac{9}{0}}$	Δw2/w2, %
Топология «а»												
1:1	4,34	5,12	+0,42	+1,04	+10,7	+25,5	1,62	1,04	-0,24	+0,06	-12,9	+6,1
Топология «б»												
1:1	3,12	3,88	-0,8	-0,2	-20,4	-4,9	1,50	1,00	-0,36	+0,02	-19,4	+2,0
Топология «в»												
1:1	4,06	2,96	+0,14	-1,12	+3,6	-27,4	1,86	0,98	0	0	0	0
2:1	4,68	3,54	+0,7	-0,7	+17,6	-16,5	1,30	0,42	-0,16	0	-11,0	0
3:1	4,90	3,94	+0,9	-0,38	+22,5	-8,8	1,20	0,22	-0,1	0	-7,7	0

Таблица 3. Геометрические параметры двухшлейфных НО после коррекции длины и ширины МПЛ

4. Заключение

Как показали результаты электродинамического моделирования, предложенная топология двухшлейфного HO с новой организацией сочленений МПЛ менее подвержена влиянию неоднородностей сочленений, которое компенсируется более простым образом, чем в традиционных топологиях HO. В наиболее часто применяемом на практике случае HO с равным делением мощности между выходными плечами (m = 1:1) для компенсации влияния неоднородностей и получения целевых АЧХ и ФЧХ в предложенной топологии HO достаточно скорректировать только значения длины МПЛ. В более общем случае может потребоваться дополнительная коррекция ширины одной из двух пар МПЛ, тогда как для традиционных топологий двухшлейфного HO во всех случаях приходится корректировать длину и ширину обеих пар МПЛ, составляющих HO. Более простая компенсация влияния неоднородностей сочленений МПЛ позволяет сократить временные затраты на проектирование топологического решения двухшлейфного HO и обеспечить лучшие частотные характеристики в рабочей полосе частот.

Список литературы

- Leighton, Jr. W. H., Milnes A. G. Junction reactance and dimensional tolerance effects on X-band 3-dB directional couplers // IEEE Transactions on Microwave Theory and Techniques. – 1971. – V. 19. – N. 10. – P. 818-824.
- 2. Vogel R. W. Effects of the T-junction discontinuity on the design of microstrip directional couplers // IEEE Transactions on Microwave Theory and Techniques. 1973. V. 21. N. 3. P. 145-146.
- 3. Cuhaci M., Lo G. J. P. High frequency microstrip branch-line coupler design with T-junction discontinuity compensation // Electronics Letters. 1981. V. 17. N. 2. P. 87-89.
- Okoshi T., Imai T., Ito K. Computer-oriented synthesis of optimum circuit pattern of 3-dB hybrid ring by the planar circuit approach // IEEE Transactions on Microwave Theory and Techniques. – 1981. – V. 29. – N. 3. – P. 194-202.
- 5. Вендик И. Б., Холодняк Д. В. Линии передачи и линейные многополюсники СВЧ: учеб. пособие. СПб.: Изд-во СПбГЭТУ "ЛЭТИ", 2015. 59 с.