УДК 621.385

Двухзазорный многолучевой резонатор с метаматериалом с возможностью подавления высших мод

Ю.С. Тихонов, А.Ю. Мирошниченко, В.А. Царев, Н.А. Акафьева

СГТУ им. Ю.А. Гагарина

Аннотация: представлены результаты исследования клистронного резонатора с метаматериалом в виде кольцевого планарного разрезного резонатора электрического типа. Методом конечных элементов в частотной области были рассчитаны электродинамические параметры резонатора. Резонатор может найти применение в миниатюрных многолучевых приборах клистронного типа для различных систем телекоммуникаций и связи.

Ключевые слова: метаматериал, многолучевой резонатор, метод конечных элементов, электродинамические параметры, подавление высших мод

1. Введение

Многолучевые клистроны (МЛК) в последнее время находят широкое применение в технике сверхвысоких частот и их разработкой занимаются научные группы в разных странах. В России и за рубежом ведутся исследования по разработке мощных усилителей электромагнитных колебаний на основе МЛК различных диапазонов [1-4]. Кроме мощных и сверхмощных МЛК, разрабатываются также миниатюрные МЛК для применения в бортовой аппаратуре [5-6]. Они представляют большой интерес для различных приложений, таких как телекоммуникация, навигация, радиолокация.

Известно, что во многом выходные параметры клистронного усилителя зависят от его электродинамической системы - резонаторов. При этом большинство резонаторов клистронов - однозазорные. Увеличения характеристического сопротивления, расширения полосы частот можно добиться применением двухзазорных резонаторов.

Наряду с этим в последнее время получают распространение различные электродинамические структуры с использование метаматериалов [7]. В основном они находят применение в резонаторах, фильтрах, фазовращателях, антеннах. Это уникальные искусственные структуры, не имеющие аналогов в природе, которые модифицируют диэлектрическую и магнитную проницаемости объектов, которые принимают отрицательные значения. Исследованиям возможности применения метаматериалов в различных приборах вакуумной электроники и ускорителях посвящено ряд работ [8-9]. Это лампа с бегущей волной, лампа с обратной волной и клистроны. При использовании метаматериала удается реализовать преимущества по сравнению с классическими приборами, такие как более высокая выходная мощность, коэффициент усиления и КПД, уменьшенные массогабаритные параметры.

В данной статье приведены результаты исследований двухзазорного многолучевого клистронного резонатора с встроенным метаматериалом. В качестве метаматериала используется дополнительный кольцевой планарный разрезной резонатор электрического типа (КПРР) (Complementary Split Ring Resonator, CeSRR) (рисунок 1), который в источнике [10] применен в лампе бегущей и обратной волны в качестве лестничной структуры, на которую нагружен волновод.

Рисунок 1. Конструкция дополнительного кольцевого планарного разрезного резонатора (КПРР).

Целью данной работы являлось оценить влияние КПРР на частотный спектр резонатора для возможного его применения в многолучевом клистроне.

2. Конструкция резонатора

Конструкция исследуемого резонатора приведена на рисунке 2. Он состоит из объемного корпуса квадратного или прямоугольного сечения 1, двух ленточных проводников прямоугольного сечения 2, КПРР элемента 3, центрального электрода 4 с пролетными каналами для электронного потока 5, двух боковых электродов 6 также имеющих пролетные каналы.

Центральный электрод 5 резонатора, имеющий призматическую форму соединен с двумя ленточными проводниками 2. В свою очередь ленточные проводники электрически соединены с объемным корпусом резонатора. В середине каждого из ленточных проводников расположены по одному КПРР, которые выполнены в виде щелевой линии. Между боковыми электродами и центральным электродом образованы два высокочастотных зазора взаимодействия. Исследовались две конструкции резонатора, первая с квадратным сечением объемного корпуса, вторая с прямоугольным сечением корпуса. В модели с прямоугольным сечением корпуса соотношение сторон выбрано по правилу «золотого сечения» - 1,61. Соответственно, во втором случае длина ленточного проводника была больше и резонансные частоты низшего вида колебаний и первого синфазного вида ниже. Основные размеры резонаторов приведены в таблице 1.

Рисунок 2. Конструкция резонатора с квадратным сечением объемного корпуса (а), прямоугольным сечением объемного корпуса (б).

	А, мм	В, мм	h, мм	а, мм	d3, mm	L _{вт} , мм	t, мм
Резонатор квадратного сечения	16	-	4,8	0,5	1	2,18	1,6
Резонатор прямоугольного сечения	16	26	4,8	0,5	1	2,18	0,75
КППР	с, мм 2,7	h1, мм 0,85	h2, мм 0,8	ј, мм 0,3	g, мм 0,2	d, мм 0,2	

Таблица 1. Геометрические размеры

3. Результаты моделирования

Для расчета электродинамических параметров резонатора использовался метод конечных элементов (МКЭ) реализованный в частотной области.

Первым шагом исследований по методике, изложенной в [10] было проведено изучение частотной характеристики отдельной ячейки КПРР. Результаты представлены на рисунке 3. Из рисунка видно, что в диапазоне 25-28 ГГц КПРР имеет ряд областей пропускания и затухания.

Рисунок 3. Частотная характеристика КПРР.

Для каждой конструкции резонатора (квадратного и прямоугольного сечения) исследовались два варианта - «чистая» полосковая линия и полосковая линия с КПРР. Известно, что резонаторы такого типа, применяемые в клистронах, обычно работают либо на низшем типе колебаний, либо на второй моде, на которых обеспечиваются достаточно высокие электродинамические параметры.

Исследование непосредственно резонаторов проводилось в диапазоне до 30 ГГц. Результаты исследования резонатора квадратного сечения приведены в таблице 2.

Таблица 2. Результаты расчета электродинамических параметров резонатора с квадратным сечением объемного корпуса

№ моды	Тип колебаний	Резонатор с полосковой линией			Тип	Резонатор с КПРР			
		F, ГГц	Q	ρ, Ом	колеоании	F, ГГц	Q ₀	ρ, Ом	
1	π	7,628	1477	106	π	7,422	1222	122	
2	2π	11,029	2839	80	2π	10,984	2666	80	
3	π	27,510	2374	13	2π	28,328	3417	5	
4	2π	28,364	3516	35	π	28,574	1526	10	

Из полученных результатов видно, что в диапазоне до 30 ГГц спектр представлен колебаниями как противофазного типа, так и синфазного типа. Применение добавочного КПРР в полосковой линии дает увеличение характеристического сопротивления (ρ) на низшей π -моде для первой конструкции на 15%, для второй на 7,7%. На первом синфазном виде колебаний ρ не меняется для резонатора квадратного сечения, либо незначительно снижается для резонатора прямоугольного сечения. При этом собственная добротность Q₀ для первой конструкции на низшей π -моде падает на 17%, на низшей 2 π -моде на 6%. Для второй конструкции резонатора на низшей π -моде собственная добротность уменьшается на 18%, а на низшей 2 π -моде на 0,8%.

№ моды	Тип колебаний	Резонатор с полосковой линией			Тип	Резонатор с КПРР		
		F, ГГц	Q	ρ, Ом	колебаний	F, ГГц	Q ₀	ρ, Ом
1	π	4,582	1391	156	π	4,484	1137	168
2	2π	9,254	3512	77	2π	9,248	3485	73
3	2π	16,044	2323	19	2π	15,858	1840	19
4	2π	18,444	3732	22	2π	18,442	3710	22
5	2π	28,032	4571	26	2π	28,027	4560	16
6	π	28,799	2930	52	π	29,521	1735	6

Таблица 3.	Результаты	расчета	электрод	цинамичес	ских пара	метров	резона	тора	a c
			прямоу	угольным	сечением	и объем	ного ко	рпу	ca

На рисунке 4 приведены спектральные зависимости для двух вариантов конструкций, на которых оценивалось резонансное сопротивление резонаторов $(R_0=\rho \times Q_0)$ в зависимости от частоты.

Рисунок 4. Спектр резонатора квадратного сечения (а) и прямоугольного сечения (б).

Из рисунков хорошо видно, что в области около 28 ГГц происходит подавление высших мод резонатора. При этом для резонатора квадратного сечения на моде f_{03} параметр R_0 меньше в 2 раза, для моды f_{04} 7,2 раза. Кроме того, для моды f_{03} происходит смещение по частоте вверх по диапазону. Для конструкции с прямоугольным сечением резонатора параметр R_0 на моде f_{05} меньше в 1,59 раза, на моде f_{06} в14,9 раз со смещением частоты вверх. Для двух основных мод (π или 2π) влияние КПРР на резонансное сопротивление не значительно.

4. Заключение

Исследована конструкция двухзазорного многолучевого клистронного резонатора с добавочным планарным кольцевым разрезным резонатором электрического типа. С помощью трехмерного моделирования проведено изучение основных электродинамических параметров в диапазоне до 30 ГГц. Резонатор имеет малогабаритную конструкцию и высокие электродинамические параметры на первых двух модах. Отмечено влияние дополнительной резонансной структуры, включенной в полосковые элементы резонатора на спектр частот. Это влияние заключалось в значительном снижении характеристического сопротивления, что в свою очередь приводит к снижению эквивалентного резонансного сопротивления и соответственно ухудшению взаимодействия с электронным потоком. Несмотря на то, что подавление частот в данных конструкциях происходит на верхних модах, достаточно далеко отстоящих от рабочих мод, метод может быть полезен для отстройки, например, от паразитных мод, на которых возможно взаимодействие с электронным потоком. Исследованный резонатор может найти применение в миниатюрных многолучевых приборах клистронного типа для различных систем телекоммуникаций и связи.

Список литературы

- Галдецкий А.В., Голованов Н.А. Многолучевые клистроны с радиальным расположением лучей // Электроника и микроэлектроника СВЧ: материалы Всерос. науч.-техн. конф. – СПб. – 2023. – С. 4-9.
- 2. Комаров Д.А., Якушкин Е.П., Парамонов Ю.Н. Многолучевые клистроны: численный анализ предельно достижимых значений электронного КПД // Электроника и микроэлектроника СВЧ: материалы Всерос. науч.-техн. конф. СПб. 2021. С. 235-240.
- 3. Kant D. et al. Design Studies for a 2 kW (CW) Power L/S Band Multi Beam Klystron // 2018 IEEE International Vacuum Electronics Conference (IVEC). IEEE, 2018. C. 111-112.
- 4. Gu H. et al. Research and Development of S-Band High Power Multibeam Klystron // IEEE Transactions on Electron Devices. 2014. T. 61. № 6. C. 1848-1853.
- 5. Kumar M. et al. Design of a High Frequency Miniature Multi Beam Klystron (MBK) // 2011 IEEE International Vacuum Electronics Conference (IVEC). IEEE, 2011. C. 321-322.
- 6. Vancil B. et al. Miniature Klystron for CubeSats // 2020 IEEE 21st International Conference on Vacuum Electronics (IVEC). IEEE, 2020. C. 47-48.
- 7. Вендик И.Б., Вендик О.Г. Метаматериалы и их применение в технике сверхвысоких частот // Журнал технической физики. – 2013. - № 1. – С. 3-28.
- 8. Duan Z. et al. Metamaterial-Inspired Vacuum Electron Devices and Accelerators // IEEE Transactions on Electron Devices. 2019. T. 66. № 1. C. 207-218.
- Wang X. et al. Recent advances in metamaterial klystrons // EPJ Applied Metamaterials. 2021. T. 8. -№ 9. – C. 1-8.
- 10. Duan Z. et al. Sub-wavelength waveguide loaded by a complementary electric metamaterial for vacuum electron devices // Physics of Plasmas. 2014. T. 21. № 10. C. 1-6.