Анализ методов интерполяции экспериментальных данных для прогнозирования режимов работы терагерцовых гиротронов

Д.А. Котова^{1,2}, А.С. Седов¹, А.А. Ананичев¹, А.П. Фокин¹

¹ ИПФ РАН, Нижний Новгород

² НГТУ им. Р.Е. Алексеева, Нижний Новгород

Аннотация: в работе приводятся данные многомерной аппроксимации экспериментальных данных зависимости выходной мощности 263 ГГц гиротрона от основных управляющих параметров. В частности, анализируется изменение погрешности предсказания выходной мощности по результатам аппроксимации в зависимости от величины сетки, а также вырабатываются рекомендации для построения данных аппроксимаций

Ключевые слова: гиротрон, терагерцовый диапазон, интерполяция

1. Введение

Одной из задач экспериментального и теоретического исследования источников электромагнитного излучения, в том числе и гироприборов является предсказание режимов работы, то есть зависимостей выходных данных от управляющих параметров.

При этом приходится сталкиваться со следующими сложностями: полное (трехмерное и нестационарное) моделирование электровакуумного прибора от момента эмиссии электронов с катода до осаждения на коллектор с электронноволновым взаимодействием с выводом и трансформацией излучения остается достаточно трудоемкой и сложной задачей даже для современных вычислительных систем, тем более, что необходимо осуществлять перебор нескольких управляющих параметров. Одним из способов является оптимизация отдельных узлов (ЭОС, резонатор, квазиоптический преобразователь) с последующим согласованием полученных результатов [1]. Такая модель при этом содержит как управляющие параметры (например, ток пучка и магнитное поле), так и несколько внутренних параметров (например, питч-фактор и разброс скоростей), которые не могут быть оценены измерены непосредственно, только с помощью сравнения а экспериментальных и теоретических данных.

Другим подходом является анализ полученных экспериментальных данных и предсказание на их основе режимов с необходимыми параметрами [2,3]. В частности, был проведен эксперимент [3], в котором при одновременном изменение двух управляющих параметров был реализован режим с перестройкой частоты при поддержании относительно постоянного уровня выходной мощности.

При этом, прогнозирование режимов в предыдущих работах основывалось на полном измерении зависимостей режима генерации гиротрона от технических параметров, что требует большого количества собранных данных. В данной работе предпринята попытка построить данные зависимости режимов от управляющих параметров с помощью интерполирования ограниченного объема экспериментальных данных и оценить эффективность данного подхода.

2. Описание эксперимента

Для исследования был выбран гиротрон с частотой 263 ГГц с рабочей модой TE_{6,5},

работающий на первой циклотронной гармонике с максимальной выходной мощностью около 1 кВт [4]. Задача построения карты режимов для такого класса гиротронов представляется наиболее актуальной, поскольку в отличие от гиротронов для управляемого термоядерного синтеза, для которых важна область с максимально возможным КПД, для гиротронов субтерагерцового и терагерцового диапазона частот средней мощности используются режимы от близких к стартовым (в частности для задач спектроскопии высокого разрешения) до высоких уровней КПД (для технологических приложений и обработки материалов).

Согласно общей схеме гиротронного комплекса можно выделить шесть управляющих параметров. В частности, это температура подогревателя, от которой зависит величина силы тока электронного пучка (в дальнейшем для наглядности полученных результатов и интерпретации будет использоваться именно величина силы тока), анодное и ускоряющее напряжение, ток катушки подмагничивания (катодная катушка), ток в основном соленоиде (далее будет указано пропорциональное данному току максимальное магнитное поле соленоида) и температура охлаждающей резонатор воды.

Для последующего анализа и демонстрации описанного подхода было решено остановится на интерполяции по трем параметрам: токе электронного пучка, ускоряющем напряжении и магнитном поле основного соленоида. Стоит отметить, что изменение анодного напряжения и температуры охлаждающей жидкости в основном используется для корректировки и стабилизации частоты выходного излучения, а главной целью данной работы был анализ зависимости выходной мощности. Ток катодной катушки обычно используется для настройки параметров электронного пучка и в дальнейшем обычно данный параметр не меняется.

Для измерения выходной мощности применялись два водяных калориметра, калибруемых при помощи встроенного в контур нагревателя известной мощности. Первый калориметр был рассчитан на измерения малой и средней мощности (до 500 Вт) с малой погрешностью за счет изготовления корпуса при помощи 3Д-печати и последующей металлизации поверхности [5], что обеспечивало хорошую теплоизоляцию воды в камере калориметра. Данный калориметр обеспечивал погрешности измерений ±3 Вт. Для измерения больших мощностей применялся металлический калориметр, обеспечивавший точность измерений ±10 Вт.

Ток пучка задавался в диапазоне от 100 до 400 мА с шагом 50 мА, ускоряющее напряжение – от 9.5 до 16 кВ с шагом 0.5 кВ.

В качестве примера на рисунке 1 приведена зависимость выходной мощности гиротрона от магнитного поля и тока пучка при фиксированном напряжении 15 кВ, снятая с большим количеством точек как по величине тока пучка, так и по магнитному полю

Как видно из рисунка, существует так называемая линия срыва, после которой генерация мощности прекращается из-за выхода из резонанса вращающихся в магнитном поле электронов и электромагнитного поля в резонаторе. Причём данная линия будет меняться при изменении ускоряющего напряжения.

При этом минимальное количество точек, которое может описать зону генерации в зависимости от магнитного поля при фиксированном токе и напряжении будет равно трем и соответствовать положениям срыва генерации, максимума мощности и точка, соответствующая границе перехода между режимами с одной и двумя продольными вариациями ВЧ-поля в резонаторе (где мощность в несколько раз меньше максимальной).

Исходя из данных соображений в результате проведения эксперимента был создан массив данных по мощности излучения на сетке 3x7x14 (магнитное поле, ток пучка, ускоряющее напряжение). При этом значения тока и напряжение представляли собой прямоугольную сетку, а по магнитному полю значения были разные для каждой зоны

генерации в силу подбора точек способом, описанных выше. В дальнейшем осуществлялся выбор из полученных данных массива меньшего размера, чтобы по нему интерполировать и затем проверить точность на отдельных точках всего собранного массива данных (далее контрольные точки).

Рисунок 1. Поверхность при сплайн-интерполяции значений мощности при ускоряющем напряжении 15 кВ, магнитном поле от 9,61 до 9,7 Тл с шагом 0.01 Тл, токе пучка от 100 до 400 мА с шагом 50 мА

3. Описание математической модели и результаты расчетов

интерполяции использовалась следующая математическая Для модель: предположим, что было необходимо предсказать значение мощности в точке с заданными параметрами тока, напряжения и магнитного поля (I₀, U₀, B₀,). На первом этапе для каждой зоны генерации (зависимость мощности от магнитного поля для заданных величин тока пучка и напряжение) производилась интерполяция кубическими сплайнами, позволяющая получать мощность для любого заданного значения магнитного поля. На втором этапе определялись значения тока электронного пучка и напряжения, соответствующие ближайшим к выбранной точке узлам сетки $(I_1 \le I_0 \le I_2, U_1 \le U_0 \le U_2)$. Затем, используя интерполяцию кубическими сплайнами, сделанную на первом этапе, были подсчитаны значения мощности при заданном магнитном поле для токов и напряжений, соответствующих узлам сетки (P₁=P(I₁,U₁, B_{0} , $P_{2}=P(I_{1}, U_{2}, B_{0})$, $P_{3}=P(I_{2}, U_{1}, B_{0})$, $P_{4}=P(I_{2}, U_{2}, B_{0})$

Данные значения мощности затем либо усреднялись (в таблице 1 – метод среднего), либо использовалась билинейная интерполяция (в таблице 1 – метод билинейный) по формуле 1.

$$f(I_0, U_0, B_0) = \frac{P_1}{(I_2 - I_1)(U_2 - U_1)} (I_2 - I_0)(U_2 - U_0) + \frac{P_2}{(I_2 - I_1)(U_2 - U_1)} (I_0 - I_1)(U_2 - U_1) + \frac{P_3}{(I_2 - I_1)(U_2 - U_1)} (I_2 - I_0)(U_0 - U_1) + \frac{P_4}{(I_2 - I_1)(U_2 - U_1)} (I_0 - I_1)(U_0 - U_1)$$
(1)

Такой метод был осуществлён для одних и тех же контрольных точек, но с различными массивами по напряжению и току пучка. В частности, использовались

массивы: 3 на 3 (напряжение 10, 13, 16 кВ; ток 100, 250, 400 мА), 7 на 4 (напряжение от 10 до 16 кВ с шагом 1 кВ; ток от 100 до 400 мА с шагом 100 мА), 7 на 7 (напряжение от 10 до 16 кВ с шагом 1 кВ; ток от 100 до 400 мА с шагом 50 мА).

Погрешность полученных значений зависела от того, каким из двух описанных калориметров был получен экспериментальный результат и составляла 6 и 20 Вт соответственно (за погрешность метода берется двойная погрешность калориметров).

Далее были получены данные для выбранных массивов двумя описанными выше методами интерполяции: среднего значения и билинейная интерполяция. Из анализа сравнения экспериментальных и интерполированных данных было видно, что существуют точки, в который ни один метод не предсказал мощность даже в пределах тройной погрешности. Связано это с тем, что данные точки находятся вблизи срыва, и для адекватной интерполяции требуются соседние точки с меньшим шагом по магнитному полю вблизи области срыва, чтобы линия срыва была построена с большей точностью.

Далее необходимо определить процент контрольных точек, которые были предсказаны верно (в пределах погрешности) и которые были предсказаны близко верному (в пределах двойной погрешности) для каждого метода. (таблица 1).

Габлица 1. Процент знач	нений мощности,	которые были	предсказаны в	верно и которы	е были
			предсказа	аны близко к ве	рному

			Матрица	значений		
Метод интерполяции	3 на 3		7 на 4		7 на 7	
	Верно	Близко к верному	Верно	Близко к верному	Верно	Близко к верному
Среднего значения	5%	5%	41%	17%	47%	11%
Билинейная интерполяция	11%	23%	70%	11%	76%	11%

Из приведенных данных видно, что массив 3 на 3 не рекомендуется использовать для успешной интерполяции данных. Также видно, что метод среднего значения предсказывает хуже, чем метод билинейной интерполяции для всех размеров массива. При этом разница в массивах 7 на 4 и 7 на 7, практически отсутствует.

Для метода билинейной интерполяции на матрице значений 7 на 4 было вычислено значение мощности для ранее неизвестных точек. Результаты представлены в таблице 2.

Таблица 2. Вычисленное значение мощност	и для заданной точки методом билинейной
	интерполяции на матрице значений 7 на 4

Заданная точка Вычисленное (напряжение, ток, значение		Ближайшая известная точка (напряжение, ток,	Значение мощности в известной	
магнитное поле)	мощности	магнитное поле)	олижаишеи точке	
13.1, 105, 9,61	18.35	13, 100, 9.62	20	
14.85, 360, 9.6	799.57	15, 350, 9.59	790	
12.51, 155, 9.62	43.95	12.5, 150, 9.61	48	

По полученным данным можно наблюдать, что рассматриваемый метод с имеющейся матрицей известных значений достаточно хорошо справляется с предсказанием.

4. Заключение

В результате проведённых исследований было показано, что для предсказания мощности от трех выбранных управляющих параметров для заданного уровня погрешности достаточно использовать массив экспериментальных данных 3 на 4 на 7 (магнитное поле, ток пучка, ускоряющее напряжение). Также для предсказания мощности лучше всего использовать метод билинейной интерполяции в матрице

известных значений 7 на 4. Дальнейшее повышение точности связано с математически более адекватным учетом линии срыва генерации.

Следующим развитием предложенных в данной работе методов является использованием метода бикубической интерполяции, для которого необходимо минимум 16 ближайших точек, что не позволяет его использовать на маленьких сетках или на границе сетки.

Исследование выполнено в рамках государственного задания ИПФ РАН на проведение научных исследований по теме № FFUF-2022-0007.

Список литературы

- Fokin A. P. et al. Control of sub-terahertz gyrotron frequency by modulation-anode voltage: Comparison
 of theoretical and experimental results //Review of Scientific Instruments. 2019. T. 90. №. 12. C.
 124705.
- 2. Глявин М. Ю. и др. Многопараметрическое управление мощностью при микроволновой обработке материалов //Письма в Журнал технической физики. 2013. Т. 39. №. 2. С. 89-94.
- 3. Ananichev A. A. et al. The Use of Simultaneous Tuning of Several Control Parameters to Stabilize the Radiation Power of a Subterahertz Gyrotron when Tuning the Generation Frequency //Instruments and Experimental Techniques. 2022. T. 65. №. 2. C. 262-266.
- 4. Glyavin M. Y. et al. Experimental tests of a 263 GHz gyrotron for spectroscopic applications and diagnostics of various media //Review of scientific instruments. 2015. T. 86. №. 5. C. 054705.
- Проявин М. Д. и др. Разработка электродинамических компонентов для приборов СВЧ электроники с использованием технологии фотополимерной трёхмерной печати с химической металлизацией поверхности //Известия высших учебных заведений. Радиофизика. – 2020. – Т. 63. – №. 5-6. – С. 521-531.