УДК 621.382.323

Влияние ловушек на накопление подвижного заряда в МОП-структурах при термополевых обработках

О.В. Александров, Н.Н. Морозов

Санкт-Петербургский государственный электротехнический университет «ЛЭТИ»

Аннотация: в данной работе разработана количественная модель влияния ловушек на параметры миграции подвижного заряда в подзатворном диэлектрике МОП-структур. Рассчитаны зависимости эффективных коэффициентов диффузии и энергии активации от концентрации ловушек, энергии связи ловушек с ионами, концентрации примеси и температуры термополевой обработки. Показано, что с увеличением концентрации ловушек накопление подвижного заряда вблизи межфазной границы Si-SiO2 замедляется. С помощью представленной модели можно объяснить разброс экспериментальных данных по диффузии ионов натрия в диоксиде кремния.

Ключевые слова: МОП-структура, подзатворный диэлектрик, подвижный ионный заряд, диффузия, термополевая обработка

1. Введение

Подвижные щелочные ионы являются причиной нестабильности параметров МОП-структур и МОП-транзисторов при термополевых обработках (ТПО) [1,2]. Наиболее распространенной загрязняющей примесью в SiO₂ является натрий [1-5]. Накопление ионов Na⁺ вблизи межфазной границы (МФГ) Si-SiO₂ под действием приложенного к затвору смещения приводит к сдвигу порогового напряжения МОП-транзисторов [1,2,6]. Рядом авторов были проведены экспериментальные исследования параметров диффузии Na в МОП-структурах, специально легированных этой примесью [2-8].

В литературе [2-8] разделяют миграцию ионов натрия на два физически разных процесса: «быстрый» с энергией активации 0.4-0.7 эВ и «медленный» с энергией активации 1-1.4 эВ. Процесс «быстрой» миграции объяснялся движениям свободного натрия по междоузлиям и «каналам» в аморфном SiO₂ [5]. Полагалось, что в «медленном» процессе натрий пребывает в связанном состоянии (например, в группах -Si-O-Na) и его движение по толщине оксида происходит перескоком по ловушкам.

Целью настоящей работы является построение количественной модели процесса миграции подвижного заряда на примере ионов натрия в МОП-структурах при термополевых обработках с учетом захвата ионов на ловушках.

2. Уравнения модели

В аморфном диоксиде кремния SiO₂ имеются нарушения структуры, которые могут служить ловушками для ионов Na⁺. Полагаем, что ионы Na⁺ в процессе своего транспорта могут захватываться на такие нейтральные ловушки T^0 в оксиде МОП-структуры с образованием положительно заряженных комплексов NT^+ :

$$Na^{+} + T^{0} \xleftarrow{k_{1}}{k_{2}} NT^{+}, \qquad (1)$$

где *k*₁ и *k*₂ – константы скоростей прямой и обратной реакций.

Система диффузионно-дрейфовых уравнений непрерывности и уравнения Пуассона, описывающая перенос подвижного зарядам с учетом процессов захвата ионов на ловушки по реакции (1), принимает вид:

$$\frac{\partial C_N^+}{\partial t} = D \frac{\partial^2 C_N^+}{\partial x^2} - \mu \frac{\partial}{\partial x} (C_N^+ E) - k_1 C_N^+ C_T^0 + k_2 C_{NT}^+, \qquad (2)$$

$$\frac{\partial C_{NT}^+}{\partial t} = -\frac{\partial C_T^0}{\partial t} = k_1 C_N^+ C_T^0 - k_2 C_{NT}^+, \tag{3}$$

$$\frac{\partial^2 V}{\partial x^2} = -\frac{\rho}{\epsilon\epsilon_0} = -\frac{q(C_N^+ + C_{NT}^+)}{\epsilon\epsilon_0},\tag{4}$$

где *x* – координата (*x* = 0 на МФГ Si-SiO₂ и *x* = *d* на МФГ SiO₂-затвор, *d* – толщина оксида); *t* – продолжительность ТПО; C_T^{0} – концентрация нейтральных ловушек T⁰, C_N^+ и C_{NT}^+ - концентрации свободных ионов натрия Na⁺ и положительно заряженных комплексов NT⁺; *V* – распределение потенциала в диэлектрике; $E = -\frac{dV}{dx}$ – напряженность электрического поля; μ – подвижность ионов; *D* – коэффициент диффузии ионов, $D = \mu \frac{kT}{q}$ (по соотношению Эйнштейна), *k* – постоянная Больцмана (*k* = 8.617·10⁻⁵ эВ/К), *T* – абсолютная температура, *q* – элементарный заряд (*q* = 1.6·10⁻¹⁹ Кл); ε – относительная диэлектрическая проницаемость (ε (SiO₂) = 3.9); ε_0 – электрическая постоянная ($\varepsilon_0 = 8.85 \cdot 10^{-12} \Phi/M$).

Начальными условиями для решения системы уравнений (2) – (3) является равномерное распределение свободных ионов натрия и нейтральных ловушек:

$$C_N^+(x,0) = C_{N0}^+, \ C_T^0(x,0) = C_{T0}^0.$$
⁽⁵⁾

Полагаем, что комплексы находятся в состоянии равновесия со свободными ионами натрия и нейтральными ловушками:

$$C_{NT}^{+}(x,0) = k_{12}C_{N0}^{+}C_{T0}^{0},$$
(6)

где k_{12} – константа равновесия реакции (1), $k_{12} = k_1/k_2$.

При диффузионном ограничении константа скорости прямой реакции (1) определяется коэффициентом диффузии подвижных ионов: $k_1 = 4\pi RD$, где $R \cong 1$ Å – эффективный радиус сечения захвата иона натрия на ловушку T^0 . Обратная реакция происходит со скоростью, зависящей от энергии связи иона с ловушкой E_b : $k_2 = v \exp(-\frac{E_b}{kT})$, где v – частота колебаний атомов, $v = 10^{12}$ с⁻¹.

Граничными условиями полагаются отражающие для ионов примеси границы диэлектрика:

$$j(0,t) = j(d,t) = 0,$$
 (7)

где j – поток ионов примеси, $j(x,t) = -D \frac{\partial C_N^+}{\partial x} + \mu C_N^+ E$.

На затвор подано постоянное положительное смещение V_G.

На концентрации компонентов реакции (1) действуют условия сохранения интегральных концентраций пустых и заполненных ловушек Q_T и примеси в свободном и связанном состоянии Q_N .

После сложения уравнений (2) и (3) при условии равновесия (6) общая система уравнений (2)-(4) примет вид уравнения переноса для суммарной концентрации ионов $C_{\Sigma} = C_N^+ + C_{NT}^+$ в электрическом поле:

$$\frac{\partial C_{\Sigma}}{\partial t} = \frac{\partial}{\partial x} \left(D_{eff} \frac{\partial C_{\Sigma}}{\partial x} \right) - \mu_{eff} \frac{\partial}{\partial x} (C_{\Sigma} E), \tag{8}$$

$$\frac{\partial^2 V}{\partial x^2} = -\frac{qC_{\Sigma}}{\varepsilon \varepsilon_0}.$$
(9)

где

$$D_{eff} = \frac{D}{1 + k_{12}C_T^0}, \ \mu_{eff} = \frac{\mu}{1 + k_{12}C_T^0}.$$
 (10)

Отметим, что уравнение (8) справедливо только в состоянии равновесия при $t >> \tau_1 = 1/k_2$ и при $t >> \tau_2 = 1/(k_1 \cdot C_T^0)$.

3. Результаты расчётов

Температурная зависимость подвижности и коэффициента диффузии ионов Na⁺ в SiO₂ от температуры описывается авторами [3-5,7,8] уравнением Аррениуса:

$$\mu = \mu_0 \exp(-\frac{E_{a\mu}}{kT}), \ D = D_0 \exp(-\frac{E_{aD}}{kT})$$

где μ_0 , D_0 – предэкспоненциальные множители, E_a – энергия активации.

В качестве исходных параметров для подвижности ионов Na выбраны $E_{a\mu} = 0.44$ эВ и $\mu_0 = 3.5 \cdot 10^{-4}$ см²/В·с из работы [3], в которой они определялись методом изотермического переходного ионного тока (ITIC).

На рис. 1 представлена рассчитанная зависимость $C_{\Sigma}(x)$ по толщине оксидной плёнки при термополевой обработке (T = 100 °C, $V_G = 1$ B, t = 60 с) для различных Q_T .

Рисунок 1. Зависимость $C_{\Sigma}(x)$ при Q_T , см⁻²: 1 – 0, 2 – 10¹⁰, 3 – 10¹¹, 4 – 10¹³, 5 – 10¹⁴, 6 – 10¹⁵ (d = 100 нм, $Q_{Na} = 10^{11}$ см⁻², $E_b = 1$ эВ, R = 1 Å, T = 100 °С, $V_G = 1$ В, t = 60 с).

На рис. 2(а) показаны зависимости $D_{eff}(C_T^{\rho})$ при различных E_b и T, построенные по уравнению (10). Полученные кривые имеют две области: область, в которой $D_{eff} = D$ при $C_T^{\rho} < 1/k_{12}$, и область экспоненциального уменьшения D_{eff} при $C_T^{\rho} > 1/k_{12}$. С ростом энергии связи натрия с ловушкой E_b область, в которой $D_{eff} = D$ сокращается. С ростом температуры эффективный коэффициент диффузии D_{eff} увеличивается, а область экспоненциального падения D_{eff} начинается при бо́льших концентрациях ловушек.

Тангенс угла наклона на рис. 2(а) определяет эффективную энергию активации E_{aeff} . Предполагая, что для D_{eff} справедливо уравнение Аррениуса, выведем соответствующую формулу для E_{aeff} :

$$E_{aeff} = -k\partial \ln(\frac{D_{eff}}{D_0}) / \partial \frac{1}{T}.$$
(11)

где $D_0 = 3 \cdot 10^{-5}$ см²/с, $E_{aD} = 0.47$ эВ – параметры диффузии по [3].

По формуле (11) были рассчитаны представленные на рис. 2(b) зависимости $E_{aeff}(C_T^{0})$ при различных E_b и *T*. При малых концентрациях ловушек $E_{aeff}=E_{aD}$, с ростом

 C_T^{ρ} значение E_{aeff} переходит в значение E_b . С ростом E_b или с падением T переход от E_{aD} к E_b происходит при меньших концентрациях C_T^{ρ} .

Рисунок 2. а) Зависимости $D_{eff}(C_T^0)$ при T = 300 °C: $1 - E_b = 1$ эВ, $2 - E_b = 1.5$ эВ, $3 - E_b = 2$ эВ; $4 - E_b = 1$ эВ, T = 100 °C; $5 - E_b = 1$ эВ, T = 20 °C (R = 1 Å). b) Зависимости $E_{aeff}(C_T^0)$ при $E_b = 1$ эВ: 1 - T = 300 °C, 2 - T = 100 °C, 3 - T = 20 °C; $4 - E_b = 1.5$ эВ, T = 300 °C; $5 - E_b = 0.75$ эВ, T = 300 °C (R = 1 Å).

4. Обсуждение результатов

Из рис. 1 можно видеть, что с увеличением Q_T накопление Na вблизи МФГ Si = SiO₂ замедляется. Уменьшение поверхностной концентрации натрия вблизи МФГ становится заметным при $Q_T > 10^{13}$ см⁻² (рис. 1, кривая 5). С ростом Q_T зависимость $C_{\Sigma}(x)$ стремится к начальному равномерному распределению примеси (рис. 1, кривая 6).

Из рис. 2(а) видно, что при определённом значении концентрации не занятых натрием ловушек C_T^0 коэффициент диффузии плавно переходит на область экспоненциального снижения с ростом C_T^0 . Область перехода можно видеть на рис. 2(b), как область с концентрациями C_T^0 при которых $E_a \,_{eff}$ начинает расти от значения E_a («быстрый» процесс миграции) до значения E_b («медленный» процесс миграции). Повышение температуры T (равно как и снижение E_b) увеличивает необходимую для перехода $E_a \rightarrow E_b$ концентрацию свободных ловушек C_T^0 .

Параметры миграции Na из различных литературных источников [3,4,6-8] приведены в табл. 1 и на рис. 3 в виде зависимости D(1/T). Из рисунка виден большой разброс в экспериментальных данных. С помощью предлагаемой модели и данных [3] рассчитаны параметры E_b и C_T^{0} для коэффициентов диффузии D и энергий активации E_a из [6]. Однако данные [4,7,8] ($E_a = 0,63-0,7$ эВ) невозможно описать данными [3]. В связи с этим, проведен расчет также по данным [8], имеющим наибольший предэкспоненциальный множитель ($\mu_0 = 46 \text{ см}^2/\text{B-c}$, $E_{a\mu} = 0.63$ эВ). Результаты моделирования представлены в табл. 1 и на рис. 4 (сплошные линии) вместе с экспериментальными данными (пунктиные линии).

Таблица 1. Экспериментальные данные и результаты моделирования

Параметры рассматриваемых источников			Параметры ловушек, рассчитанные по данным [3] и [8]	
Источник	<i>Е</i> _a , эВ	<i>D</i> при <i>T</i> = 150 °C, см ² /с	E_b , $\Im \mathbf{B}$	C_T^{θ} , см ⁻³
[6,1]	1	2.10-13	1	$5 \cdot 10^{19}$
[6,2]	1.4	3.10-15	1.4	$5.5 \cdot 10^{16}$

Источник	<i>Е</i> _a , эВ	<i>µ0</i> , см ² /В·с	E_b , $\Im \mathbf{B}$	CT^{θ} , cm ⁻³	
[7]	0.7	40	0.75	$1.2 \cdot 10^{18}$	
[4]	0.66	1.05	0.69	9·10 ¹⁹	

Параметры ловушек, рассчитанные по данным [8]

Рисунок 3. Зависимости $D_{eff}(1/T)$, где пунктирные линии – эксперимент, сплошные – расчет по модели.

5. Выводы и заключение

Параметры рассматриваемых источников

Разработана количественная модель перераспределения подвижного заряда в МОП-структурах при ТПО, учитывающая наличие ловушек для свободных ионов примеси. Показано, что захват примеси на ловушки приводит к замедлению накопления подвижного заряда (рис. 1), уменьшению эффективного коэффициента диффузии (рис. 2(a)) и увеличению эффективной энергии активации (рис. 2(b)). Рост концентрации подвижного заряда увеличению приводит К эффективного коэффициента диффузии и снижению энергии активации. Показано, что в рамках модели большой разброс литературных данных по величинам D и E_a для примеси Na (рис. 3) может быть объяснён захватом свободных ионов Na⁺ на ловушки, концентрация которых зависит от технологии получения SiO₂.

Список литературы

- Snow E. H. et al. Ion Transport phenomena in insulating films //Journal of Applied Physics. 1965. T. 36. – №. 5. – C. 1664-1673.
- Verwey J. F., Amesekera E.A. and Bisschop J. The physics of SiO₂ layers //Reports on Progress in Physics. - 1990. - T. 53. - №. 10. - C. 1297-1331.
- 3. Greeuw G. and Verwey J. F. The mobility of Na+, Li+, and K+ ions in thermally grown SiO2 films //Journal of Applied Physics. – 1984. – T. 56. – №. 8. – C. 2218-2224.
- Stagg J. P. Drift mobilities of Na+ and K+ ions in SiO2 films //Applied Physics Letters. 1977. T. 31. – №. 8. – C. 532-533.
- 5. Hofstein S. R. Proton and sodium transport in SiO2 films //IEEE Transactions on Electron Devices. 1967. T. 14. №. 11. C. 749-759.
- 6. Takuo Sugano et al. Ordered structure and ion migration in silicon dioxide films //Japanese Journal of Applied Physics. 1968. T. 7. №. 7. C. 715-730.
- Hofstein S. R. Space-charge-limited ionic currents in silicon dioxide films //Applied Physics Letters. 1967. – T. 10. – №. 10. – C. 291-293.
- Kriegler R. J. and Devenyi T. F. Direct measurement of Na+ ion mobility in SiO2 films //Thin Solid Films. - 1976. - T. 36. - №. 2. - C. 435-439.