Формирование коротких и ультракоротких импульсов в ЛБВ-подавителе, работающем в режиме нелинейного срыва Компфнера

С.В. Гришин, В.Н. Скороходов

СГУ им. Н.Г. Чернышевского

Аннотация: в работе приводятся экспериментальные результаты по прохождению монохроматического и импульсно-модулированного СВЧ сигналов разного уровня мощности через «прозрачную» лампу бегущей волны (ЛБВ) с постоянным шагом спирали и «непрозрачную» ЛБВ с переменным шагом спирали, которые работают в режиме подавления. Установлено, что в обеих лампах полное подавление сигнала наблюдается как в линейном, так и в нелинейном режимах. В случае прозрачной ЛБВ, у которой отсутствует эффективная генерация высших гармоник тока, на фронте и срезе радиоимпульсов, прошедших через ЛБВ-подавитель, формируются короткие импульсы огибающей длительностьюпорядка десятка наносекунд. У непрозрачной ЛБВ эффективная генерация высших гармоник тока приводит к формированию периодической последовательности импульсов субнаносекундной длительности на частоте несущей монохроматического СВЧ сигнала. Такие ультракороткие импульсы наблюдаются, когда частота первой гармоники тока соответствует нелинейному срыву Компфнера.

Ключевые слова: лампа бегущей волны, срыв Компфнера, ультракороткие импульсы

1. Введение

В последние годы активно проводятся исследования по созданию в микроволновом диапазоне частот автономных источников импульсных сигналов ультракороткой длительности (УКИ) [1-4]. Такие источники представляют собой кольцевые автогенераторы, в цепи обратной связи которых содержатся нелинейные элементы в виде насыщающихся поглотителей [1-3] или насыщающихся усилителей [4] сигнала. В качестве насыщающихся поглотителей в микроволновом диапазоне было предложено использовать лампу бегущей волны (ЛБВ), работающую либо в режиме срыва Компфнера [1, 2], либо в режиме циклотронного резонанса [3]. Это дает возможность получать достаточно мощные ультракороткие импульсы огибающей субнаносекундной длительности в миллиметровом диапазоне [1, 3] и многосолитонные комплексы в сантиметровом диапазоне длин волн [2]. В последнем случае диссипативные структуры формируются при совместном использовании с быстрым насыщающимся поглотителем (время срабатывания такого нелинейного поглотителя гораздо меньше времени обхода сигнала по кольцевому резонатору) нелинейной спин-волновой линии передачи, осуществляющей медленную модуляцию добротности кольцевого резонатора параметрически возбуждаемыми спиновыми волнами [2].

ЛБВ, работающая в усилительном режиме, может использоваться как умножитель частоты, например, для работы в терагерцовом диапазоне [5]. Параметры лампы в этом случае выбираются таким образом, чтобы первая (фундаментальная) и несколько высших гармоник тока были сильно подавленными, а рабочей была четвертая гармоника тока на частоте >300 ГГц. В тоже самое время подавление первой гармоники тока и генерацию высших гармоник тока можно осуществлять и в ЛБВ-подавителе, работающем в режиме нелинейного срыва Компфнера. В этом случае изменение уровня мощности монохроматического СВЧ сигнала на входе ЛБВ-подавителя должно приводить

к управлению амплитудами и фазами гармоник тока, а при установлении между ними определенных соотношений и к формированию импульсной последовательности непосредственно на частоте сверхвысокочастотного сигнала.

В настоящей работе представлены результаты по формированию коротких и ультракоротких импульсов в ЛБВ-подавителе, работающем в режиме нелинейного срыва Компфнера в случае неэффективной и эффективной генерации высших гармоник тока.

2. Экспериментальная установка

Эксперименты проводились с прозрачной и непрозрачной ЛБВ. Прозрачная ЛБВ выполнена на основе регулярной спиральной замедляющей системы (3С) без поглотителя. Лампа работает в дециметровом диапазоне на частотах от 600 МГц до 1130 МГц. Коэффициент усиления лампы достигает значения ~20 дБ на частоте 800 МГц при токе пучка I₀₁=60 мкА и ускоряющем напряжении U₀₁=117 В. Длина однородного участка спирали 3С – 186 мм, шаг спирали – 0.27 мм, диаметр витка спирали – 3.6 мм, диаметр провода спирали – 0.2 мм, материал спирали – молибден. Непрозрачная ЛБВ выполнена на основе нерегулярной спиральной ЗС с переменным шагом и поглотителями. Лампа работает в сантиметровом диапазоне на частотах от 1.5 ГГц до 6.7 ГГц. Коэффициент усиления лампы достигает значения ~47 дБ на частоте 3.52 ГГц при токе пучка I₀₂=100 мА и ускоряющем напряжении U₀₂=3 кВ. Длина одного однородного участка спирали с шагом 1.5 мм–170 мм, длина другого однородного участка спирали с шагом 1.3 мм – 128 мм. Длина всей ЗС – 323 мм. Диаметр витка спирали – 3.3 мм, диаметр провода спирали – 0.5 мм. Для измерения S-параметров ЛБВ использовался анализатор цепей PNAE8362 (10 МГц-20 ГГц), обеспечивающий изменение уровня мощности монохроматического СВЧ сигнала на входе ЛБВ в диапазоне от -30 дБмВт до 0 дБмВт. Измерения модуля коэффициента передачи К проводились в режиме свипирования частоты f при фиксированном значении входной мощности P_{in} , так и в режиме свипирования входной мощности на фиксированной частоте. Для измерения спектральных составляющих СВЧ сигнала на входе и выходе ЛБВ использовался анализатор спектра ESA-LE4408B, работающий в диапазоне частот 9 кГц-26.5 ГГц и генератор PSGE8257D, работающий в диапазоне частот 10 МГц-20 ГГц. Для измерения формы сигнала во временной области использовался осциллограф реального времени DSO 81004Вс полосой частот 10 ГГц.

3. Результаты экспериментальных исследований

3.1 Прозрачная ЛБВ с постоянным шагом спирали

На рисунке 1 приведены амплитудно-частотные характеристики (АЧХ) и мощностная характеристика ЛБВ, работающей в режиме подавления СВЧ сигнала. Результаты получены при условии, что центральная частота полосы подавления f_0 =800 МГ ц находится в центральной части рабочей полосы частот лампы. Как следует из результатов, представленных на рисунке 1а, при малых уровнях P_{in} на АЧХ лампы не наблюдается полного подавления монохроматического СВЧ сигнала. Практически полное подавление сигнала достигается на частоте f_0 только в нелинейном режиме при значении входной мощности $P_{in} = -6.4$ дБмВт. Однако при уровнях мощности $P_{in} > -6.4$ дБмВт оно опять уменьшается. Таким образом, при $P_{in} = -6.4$ дБмВт наблюдается режим практически полного подавления монохроматического сигнала, аналогичный классическому срыву Компфнера, с той лишь разницей, что наибольшее подавление наблюдается на частоте f_0 не только за счет выбора соответствующих значений тока пучка и напряжения, но и за счет выбора амплитуды бегущей электромагнитной волны. Как следует из результатов, представленных на рисунке 1b, на зависимости $K(P_{in})$, измеренной на частоте f_{01} , присутствуют два участка (линейный и

нелинейный) и два характерных уровня мощности, один из которых $P_{th1} = -16.7$ дБмВт соответствует началу нелинейного режима работы лампы, а другой $P_{th2} = -6.4$ дБмВт соответствует максимальному уровню подавления сигнала в нелинейном режиме. В интервале значений входной мощности $P_{th1} < P_{in} < P_{th2}$, нарастание амплитуды бегущей волны приводит к ускорению электронов, которые при взаимодействии с бегущей волной приобретают большую энергию. Это обусловливает ограничение мощности СВЧ сигнала на выходе ЛБВ-подавителя. При $P_{in} = P_{th2}$, сформировавшийся электронный сгусток находится долгое время в области максимального ускоряющего поля, забирая практически всю энергию от электромагнитной волны. При $P_{th} > P_{th2}$ мощность СВЧ сигнала на выходе ЛБВ-подавителя начинает возрастатьиз-за того, что электронный сгустокнаходится теперь долгое время в области сти тормозящего поля, отдавая свою энергию электромагнитной волне.

Рисунок 1. (а) АЧХ и (b) зависимость модуля коэффициента передачиK от мощности сигнала на выходе ЛБВ-подавителя P_{in} , измеренные при I_{01} =10 мкА, U_{01} =107 В. На (а) АЧХ получены при разных уровнях входной мощности P_{in} : -30 дБмВт (кривая 1), -6.4 дБмВт (кривая 2) и 0 дБмВт (кривая 3). На (b) результаты получены на частоте f_0 .

Были проведены экспериментальные исследования по наблюдению генерации высших гармоник тока ЛБВ. Эксперименты показали, что помимо первой гармоники в спектре мощности монохроматического СВЧ сигнала, прошедшего через ЛБВ-подавитель, наблюдается третья гармоника, мощность которой на 10 дБ меньше мощности первой гармоники. При этом СВЧ сигнал был близок по форме к гармоническому сигналу и не испытывал нелинейных искажений. Это указывает на неэффективную генерацию высших гармоник тока в ЛБВ данного типа.

Помимо этого, были проведены исследования прохождения импульсно-модулированного (ИМ) СВЧ сигнала через ЛБВ-подавитель. Частота несущей ИМ СВЧ сигнала соответствовала частоте f_0 , на которой наблюдалось практически полное подавление монохроматического СВЧ сигнала в нелинейном режиме (нелинейный срыв Компфнера). ИМ СВЧ сигнал, поступавший на вход ЛБВ-подавителя, представлял собой периодическую последовательность радиоимпульсов с несущей частотой f0, длительностью 3 мкс и скважностью q=2. Длительность радиоимпульсов выбиралась, исходя из того, чтобы спектр ИМ СВЧ сигнала был относительно узкополосным и находился в полосе частот срыва Компфнера.

На рисунке 2 приведены огибающие радиоимпульсов, измеренные как на входе, так и на выходе ЛБВ-подавителя. Из представленных результатов следует, что, когда подавление монохроматического СВЧ сигнала является максимальным, основная часть радиоимпульса практически полностью подавляется (см. рисунок 2b). Однако на фронте и срезе огибающей радиоимпульса остаются «выплески» в виде относительно коротких импульсов огибающей, длительность которых является намного меньше длительности исходного радиоимпульса. Так, при пиковой мощности $P_p = P_{th2}$ (см. рисунок 2b), длительность короткого импульса огибающей имеет величину ~11 нс, а с увеличением пиковой мощности длительность короткого импульса огибающей уменьшается, т.е. короткие импульсы огибающей испытывают своего рода компрессию при $P_p > P_{th2}$. Так, при превышении пиковой мощности входного радиоимпульса порога P_{th2} в 1.4 раза (см. рисунок 2c) длительность короткого импульса огибающей уменьшается до 6.2 нс, а при превышении пиковой мощности порога P_{th2} в 4 раза (см. рисунок 2d) длительность короткого импульса огибающей уменьшается до 2.7 нс. Отсюда следует, что длительность коротких импульсов огибающей практически линейно зависит от уровня пиковой мощности входного радиоимпульса.

Рисунок 2. Огибающие радиоимпульса на входе (верхняя панель) и выходе (нижняя панель) ЛБВ-подавителя, полученные при различных значениях пиковой мощности P_p : -9.4 дБмВт (а), -6.4 дБмВт (b), -4.9 дБмВт (c) и -0.4 дБмВт (d). На вставках к рисункам (b, c) показаны увеличенные фрагменты амплитудных и фазовых профилей коротких импульсов огибающей. Измерения проведены при значениях U_{01} =107 В и I_{01} =10 мкА.

3.2 Непрозрачная ЛБВ с переменным шагом спирали

На рисунке За приведена АЧХ непрозрачной ЛБВ, измеренная в режиме нелинейного подавления СВЧ сигнала. Значения тока пучка и напряжения здесь подобраны таким образом, чтобы наибольший уровень ослабления СВЧ сигнала~-84 дБ наблюдался в нелинейном режиме работы ЛБВ-подави теля на частоте $f_{01}=2$ ГГц, находящейся на низкочастотном краю полосы частот ЛБВ.Видно, что уменьшение или увеличение уровня мощности СВЧ сигнала относительно значения $P_{th}=+10$ дБмВт приводит к уменьшению ослабления сигнала на частоте f_{01} .

Об эффективной генерации высших гармоник тока в режиме нелинейного срыва Компфнера, когда $P_{in} > P_{th}$ (ЛБВ-подавитель работает как насыщающийся поглотитель), свидетельствуют спектры мощности СВЧ сигнала, полученные на входе и выходе ЛБВ-подавителя (см. рисунок 3b). Из представленных результатов следует, что СВЧ сигнал, подаваемый на вход ЛБВ-подавителя, не является строго гармоническим. В спектре мощности СВЧ сигнала присутствуют высшие гармоники, уровень которых значительно меньше уровня фундаментальной гармоники (перепад по мощности между первой и второй гармониками СВЧ сигнала составляет величину ~45 дБ). Это позволяет рассматривать СВЧ сигнал как монохроматическое излучение. На выходе ЛБВ-подавителя уровень мощности второй гармоники увеличивается на 8 дБ, а уровень мощности третьей и четвертой гармоник на 12 дБ и 8 дБ по сравнению со входом. Хотя уровень мощности первой гармоники уменьшается на 36 дБ по сравнению со входом, она остается больше второй гармоники на 1 дБ, третьей гармоники на 7 дБ и четвертой гармоники на 18 дБ. Это приводит к нелинейному искажению формы сигнала. Как следует из результатов, представленных на рисунке 3с, отрицательные значения напряжения уменьшаются практически до нулевых значений, а из сигнала с положительными значениями амплитуды формируется периодическая последовательность УКИ,период следования которых определяется фундаментальной частотой, а их длительность– шириной спектра СВЧ сигнала на выходе ЛБВ.

Рисунок 3.(а) АЧХ ЛБВ-подавителя, (b) спектры мощности и (c) временные ряды СВЧ сигнала, измеренные на входе (верхние рисунки) и выходе (нижние рисунки) ЛБВ-подавителя. На (а) АЧХ получены при разных уровнях входной мощности P_{in} : +2 дБмВт (кривая 1), +10 дБмВт (кривая 2) и +17 дБмВт (кривая 3). На (b, c) результаты получены для f_{01} =2 GHz и P_{in} =+20 дБмВт. Измерения выполнены при I_{02} =8.9 мА и U_{02} =2150 В.

4. Заключение

В заключение отметим, что предложенный в работе способ получения УКИ из монохроматического сигнала может быть распространен на ЛБВ, работающие в более высокочастотном (и даже терагерцовом) диапазоне частот.

Исследование выполнено за счет гранта Российского научного фонда № 23-22-00274, https://rscf.ru/project/23-22-00274/

Список литературы

- Ginzburg N. S. et al. Generation of trains of ultrashort microwave pulses by two coupled helical gyro-TWTs operating in regimes of amplification and nonlinear absorption// Phys. Plasm. – 2017 – V. 24. – No 2 – P. 023103.
- 2. Grishin S.V.et al.Self-generation of chaotic dissipative multisoliton complexes supported by competing nonlinear spin-wave interactions//Phys. Rev. E. 2018. V. 98. No 2. P. 022209.
- Ginzburg N. S. et al.Nonlinear cyclotron resonance absorber for a microwave subnanosecond pulse generator powered by a helical-waveguide gyrotron traveling-wave tube// Phys. Rev. Appl. 2020. V. 13. No 4. P. 044033.
- 4. Bir A.S. et al. Experimental observation of ultrashort hyperchaotic dark multisolitoncomplexes in a magnonicactive ring resonator// Phys. Rev. Lett. - 2020. - V. 125. - No 8. - P. 083903.
- Zhang R. et al.Novel dual beam cascaded schemes for 346 GHz harmonic-enhanced TWTs// Electronics. – 2021. - V. 10. – No 2. – P. 195.