УДК 621.385.69

Резонаторы с повышенной селективностью для терагерцового гиротрона с большой орбитой

И.В. Бандуркин, Ю.К. Калынов, И.В. Ошарин, А.В. Савилов

Институт прикладной физики им. А.В. Гапонова-Грехова РАН

Аннотация: исследована новая схема импульсного гиротрона с большой орбитой, работающего в терагерцовом частотном диапазоне на третьей циклотронной гармонике, основанная на использовании модифицированного резонатора с пониженной дифракционной добротностью и улучшенной модовой селективностью. Ранее этот прибор был успешно экспериментально реализован с регулярным резонатором, мощность выходного излучения составляла 0.4 кВт на частоте 1 ТГц. Использование модифицированного резонатора позволяет увеличить выходную мощность до 1.3 кВт при увеличении диапазона параметров устойчивого селективного возбуждения моды на высокой циклотронной гармонике.

Ключевые слова: гиротроны, терагерцовое излучение, резонаторы, гармоники гирочастоты

1. Введение

Гиротроны в настоящее время рассматриваются в качестве одних из наиболее перспективных источников когерентного излучения субтерагерцевого и терагерцового диапазонов с относительно высокой средней мощностью и активно разрабатываются в ряде лабораторий мирового уровня [1-7]. Однако доступность криомагнитов является основным ограничивающим фактором для создания терагерцовых гиротронов, работающих на основном циклотронном резонансе. Это означает практически неизбежный переход к работе на высоких гармониках циклотронной частоты. В этом случае конфигурация гиротрона с большой орбитой (ГБО), основанная на использовании приосевого электронного пучка, может быть использована для повышения модовой селективности [5,6]. В 2008 г. успешно реализован импульсный 1 ТГц ГБО, в котором получена мощность 0,4 кВт при работе на третьей циклотронной гармонике при ускоряющем напряжении 80 кВ в магнитном поле 13,7 Тл [5]. Сейчас работы по увеличению мощности этого ГБО до уровня нескольких кВт [8]. В новом эксперименте был испытан ГБО с тем же электронным пучком (80 кВ/0,7 А/10 мкс), но при использовании модифицированного рабочего резонатора, что позволило уменьшить дифракционную добротность и, следовательно, долю омических потерь, за счёт плавного закругленного выхода. Кроме того, для повышения селективности генерации рабочей моды ТЕ_{3,7} новый резонатор содержал нерегулярный элемент в виде осесимметричной прямоугольной канавки на стенке. Такой селектирующий элемент был предложена в [8,9] и ранее успешно использовался для улучшения модовой селективности в гиротроне на второй гармонике традиционной конфигурация [7]. Кроме того, был немного улучшен рабочий электронный пучок. В результате этих усовершенствований мощность выходного излучения была увеличена с 0.4 кВт до 1.3 кВт, а также значительно расширена зона генерации рабочей моды на третьей циклотронной гармонике.

2. Терагерцовый ГБО с модифицированным резонатором

Увеличение мощности излучения упомянутого гиротрона может быть достигнуто за счет увеличения мощности электронного пучка и уменьшения доли омических

потерь в резонаторе. На первом этапе модификации ГБО использовалась такая же (как и в эксперименте [5]) электронная пушка с каспом магнитного поля, формирующим приосевой электронный пучок 80 кВ / 0,7 A / 10 мкс. Однако в этом случае использовавшийся в ранее регулярный резонатор (рис. 1 а), был заменен на резонатор с гладким закругленным дифракционным выходом излучения (рис. 1. b). За счет снижения дифракционной добротности это позволило, по расчетам, снизить долю омических потерь рабочего режима $TE_{3,7}$ с 85-90% до 70-75%. Кроме того, цилиндрическая часть новой электродинамической системы содержала элемент в виде аксиально-симметричной канавки [7-9] с радиусом внутри, близким к радиусу отсечки для моды $TE_{3,8}$. Ширина такой неоднородности должна была обеспечивать практически полное отсутствие рассеяния рабочей волны. По предварительным расчетам, наличие этой канавки должно позволить расширить зону генерации рабочей моды, тем самым повысив его селективность.

Рисунок 1. (а) Профиль резонатора простейшей формы, использовавшийся в эксперименте [5]. (b) Профиль квазирегулярного резонатора со сглаженным дифракционным выводом излучения и с селектирующей канавкой, рассчитанной на моду TE3,7 на частоте около 1 ТГц, использовавшийся в новом эксперименте.

В эксперименте при энергии частиц 80 кэВ и в диапазоне рабочих магнитных полей 13,6-14,1 Тл на плоскости параметров «электронный ток - магнитное поле» обнаружены области устойчивой селективной генерации на моде TE_{3,7} на 3-й циклотронной гармонике и на моде TE_{2,5} на 2-й гармонике, а также область двухчастотной совместной генерации этих мод. Эти результаты сравнивались с такой же диаграммой, найденной ранее в первом эксперименте [5] (рис. 2). Моды идентифицировались по частоте излучения и по величине резонансного магнитного поля. Для определения частоты генерации выходной волновой сигнал исследовался набором волноводных фильтров с частотами отсечки от 0,8 ТГц до 0,4 ТГц.

Рисунок 2. Полученные в эксперименте зоны генерации мод TE3,7 на TE2,5 на плоскости параметров «ток электронного пучка - рабочее магнитное поле» в ГБО с традиционным регулярным резонатором (а), а также с модифицированным резонатором (b). Заштрихована область совместной генерации двух мод.

Согласно рис. 2, в новом эксперименте стартовые токи обоих конкурирующих мод уменьшились. Возможными причинами являются больший усредненный питч-фактор используемого в новом эксперименте электронного пучка, а также его улучшенная

юстировка. Согласно моделированию электронно-оптической системы, питч-фактор был увеличен с 1,4 до 1,5. Тем не менее, даже в этой ситуации (т.е. когда превышение рабочего тока стартовых порогов обеих волн стало больше) использование нового резонатора привело к увеличению области одночастотной генерации рабочей моды, а также области двухчастотной генерации. Также наблюдалось значительное снижение эффективности генерации паразитной моды в ее оптимальном режиме. Выходная мощность ГБО измерялась калориметром. Длительность импульсов генерации равнялась 8 мкс. Максимальная выходная мощность излучения при работе ГБО на 3-й циклотронной гармонике составила 1,3 кВт при КПД выходной волны 2,4 %.

Рисунок 3. Измеренна мощность выходного излучения и соответствующий волновой КПД в зависимости от рабочего тока.

Описанное выше значительное (более чем в три раза по сравнению с предыдущим экспериментом [5]) увеличение выходной мощности требует дополнительных пояснений. По предварительным расчетам, использование в новом резонаторе специального закругленного конуса должно привести к снижению доли омических потерь рабочей моды с 85-90% до 70-75%. Это, в свою очередь, должно привести к увеличению мощности выходной волны лишь примерно в 2 раза (т.е. до 0,8 кВт вместо полученных в эксперименте 1,3 кВт).

Возможное объяснение состоит в том, что дополнительный рост выходной мощности был обеспечен за счет влияния селектирующей канавки на продольную структуру рабочей волны. Если канавка имеет резонансный характер (а именно ее радиус и длина выбраны так, чтобы обеспечить полную трансформацию рабочей поперечной моды TE_{3,7} в следующую радиальную моду TE_{3,8} внутри этой неоднородности), то наличие такого элемента не должно нарушать продольную структуру рабочей волны [8,9]. Предположительно, в резонаторе, использованном в эксперименте, радиус канавки был несколько меньше резонансного радиуса. В этой ситуации канавка работала скорее не как трансформатор мод TE_{3,7}, TE_{3,8}, TE_{3,7}, а как неоднородность для моды TE_{3,7}, возмущая ее продольную структуру.

Расчеты электронно-волнового взаимодействия проводились на основе пространственно-временной модели взаимодействия между электронным пучком и волной с фиксированной поперечной структурой, но с нефиксированной продольной структурой; этот подход подробно описан в [11, 12]. В этих расчетах рассматривается приосевой электронный пучок с током 0,7 А, со средним питч-фактором 1,5 и с разбросом скоростей 35% (ширина гауссовой функции распределения). Учитывались случаи двух резонаторов, а именно квазирегулярного с закругленной выходной секцией (рис. 1, б), но без селективной канавки, и квазирегулярный резонатор со скругленным верхним конусом и с селективной канавкой, показанный на рис. 1, б (рис. 5 б). В последнем случае использовалась простейшая модель, когда канавка работает только как неоднородность для рабочей поперечной моды TE_{3,7} без трансформации этой моды в другие моды. Однако стационарное «холодное» моделирование этого резонатора (основанное на подходе, учитывающем влияние трансформации мод на нерезонансную канавку [9,13]) также предсказывает существование волны с показанной на рис. 5 b продольной структурой.

Рисунок 4. Результаты моделирования терагерцового ГБО на третьей гармонике. Электронный (сплошные линии) и волновой КПД (пунктирные линии) для случая использования традиционного регулярного резонатора с коническим выходом (синие кривые), а также оптимизированного резонатора с плавным дифракционным выводом излучения (красные кривые).

Сначала исследовалось влияние оптимизированной сглаженной выходной секции резонатора на мощность излучения. В регулярном резонаторе с прямым коническим выходом (аналогичным «старому» резонатору, показанному на рис. 1, a) моделирование предсказывает выходную мощность волны 0,6 кВт и омические потери около 85 % (рис. 4). Сглаженный вывод несколько увеличивает (примерно на четверть) волновой КПД, однако и в этом случае выходная мощность значительно ниже полученной в эксперименте. Однако если учесть влияние нерезонансной канавки на продольную структуру волны (рис. 5), то, несмотря на некоторое снижение электронного КПД, волновой КПД возрастает до 2,4 % (соответствующая выходная мощность около 1,3 кВт) за счет снижения омических потерь до 60%. Это вызвано дифракционной добротности из-за уменьшения эффективной снижением протяженности поля волны внутри резонатора. В то же время укорочение не приводит к уменьшению эффективной длины электронно-волнового взаимодействия, так как слабое волновое поле, имеющееся в области перед канавкой (рис. 5 b), по-видимому, все еще работает как модулятор пучков электронов.

Рисунок 5. Посчитанные электронный и волновой КПД терагерцового ГБО на третьей гармонике в зависимости от времени (а), а также профиль резонатора с селектирующей канавкой и продольная структура поля рабочей волны в стационарном режиме (b).

Изначально целью использования канавки было улучшить селективность резонатора, и такое положительное влияние канавки на снижение омических потерь

не ожидалось. По-видимому, этот эффект заслуживает детального теоретического анализа и может стать основой метода снижения омических потерь в гиротронах с длинными резонаторами.

3. Заключение

Моделирование, проведенное для случая усредненного питч-фактора электронов, равного 1,5, предсказывает выходную мощность 1,3 кВт. Однако, естественно, измеренная в эксперименте мощность 1.3 кВт представляет из себя мощность в волновом пучке, прошедшем через выходное окно ГБО. С учетом потерь в волновом преобразователе и в окне гиротрона (на уровне 30-40%), можно сказать, что в эксперименте мощность волнового пучка на выходе из рабочего резонатора должна была быть около ≈2 кВт. Это означает, что, по-видимому, питч-фактор в электронном пучке был выше. По проведенным расчетам, для резонатора с канавкой (рис. 5 b) выходная мощность 2 кВт (и соответствующий выходной волновой КПД 3,5%) обеспечивается при усредненном питч-факторе, близком к 1,8. Такой большой питчфактор, предусмотренный в новом эксперименте, объясняет значительное уменьшение стартовых токов как рабочего, так и паразитного режимов (по сравнению со старыми экспериментами [5], см. рис. 2). Отметим, что в проведенных расчетах увеличение питч-фактора с 1,5 до 1,8 не меняет долю омических потерь в случаях резонаторов без канавки и с ней. В результате даже при столь большом питч-факторе высокий уровень мощности выходной волны нельзя объяснить без учета положительного эффекта влияния канавки на долю омических потерь.

Исследование выполнено при поддержки **гранта Российского научного фонда** (проект № 19–19–00599).

Список литературы

- 1. Hornstein M. et al. Second harmonic operation at 460 GHz and broadband continuous frequency tuning of a gyrotron oscillator // IEEE Transactions on Electron Devices. 2005. T. 52. №. 5. C. 798-807.
- 2. Idehara T. et al. The first experiment of a THz gyrotron with a pulse magnet // International Journal of Infrared and Millimeter Waves. 2006. T. 27. № 4. C. 319–331.
- 3. Hornstein M. et al. Continuous-wave operation of a 460-GHz second harmonic gyrotron oscillator // IEEE Transactions on Plasma Science. 2006. T. 34. № 3. C. 524–533.
- 4. Glyavin M. et al. Generation of 1.5-kW, 1-THz coherent radiation from a gyrotron with a pulsed magnetic field // Physical Review Letters. 2008. T. 100. № 1. C. 015101.
- 5. Bratman V. et al. Large-orbit gyrotron operation in the terahertz frequency range // Physical Review Letters. 2009. T. 102. № 24. C. 245101.
- 6. Kalynov Yu. et al. Powerful continuous-wave sub-terahertz electron maser operating at the 3rd cyclotron harmonic // Applied Physics Letters 2019. T. 114. C. 213502.
- 7. Bandurkin I. et al. Demonstration of a selective oversized cavity in a terahertz second-harmonic gyrotron // IEEE Electron Device Letters. – 2020. – T. 41. № 9. – C. 1412–1415.
- 8. Kalynov Yu, et al. High-Power Pulsed Terahertz-Wave Large-Orbit Gyrotron for a Promising Source of Extreme Ultraviolet Radiation // Radiophysics and Quantum Electronics. 2020. T. 63. C. 354.
- Bandurkin I. et al. Method of Providing the High Cyclotron Harmonic Operation Selectivity in a Gyrotron With a Spatially Developed Operating Mode // IEEE Transactions Electron Devices. – 2017. – T. 64. – № 9. – C. 3893–3897.
- 10. Zarudneva G. et al. Radiation mode composition of open resonators in the form of axisymmetric, weakly irregular waveguides // Radiophysics Quantum Electronics. 1988. T. 31. № 3. C. 254-257.
- 11. Kalynov Y. et al. Stability of Excitation of Traveling Waves in Gyrotrons with Low-Relativistic Electron Beams // IEEE Transactions on Electron Devices. 2017. T. 64. № 11. C. 4693-4699.
- 12. Kalynov Y. et al. Competition of Oscillations at Different Cyclotron Harmonics in the Subterahertz Large-Orbit Gyrotron // IEEE Transactions an Electron Devices. – 2020. – T. 67. – C. 3795.
- 13. Bandurkin I. et al. Simulations of Sectioned Cavity for High-Harmonic Gyrotron // IEEE Transactions on Electron Devices. 2017. T. 64. № 1. C. 300-305.