ЭОС с низковольтным бессеточным управлением, увеличенным катодным током и МПФС с 3-ей гармоникой.

Ю.Ю. Филин, С.П. Морев, Н.М. Коломийцева

АО «НПП «Исток» им. Шокина»

Аннотация. В статье представлены результаты разработки ЭОС с кольцевым катодом в электронной пушке и магнитной периодической фокусирующей системы (МПФС) со значимой величиной третьей пространственной гармоники магнитного поля. Найдена конфигурация электродов электронной пушки с низковольтным бессеточным управлением током пучка, обеспечивающая формирование электронного потока с малым разбросом скоростей электронов в плоскости электростатического кроссовера. Найдена конфигурация полюсных наконечников и вставок из магнитомягкого материала, обеспечивающая транспортировку электронного потока с током 0,8 А при напряжении менее 10000 В.

Ключевые слова: электронно-оптическая система (ЭОС), низковольтное бессеточное управление, магнитная периодическая фокусирующая система (МП Φ С), высшие гармонические составляющие магнитного поля.

1. Введение

В работе [1] были представлены результаты теоретических и экспериментальных исследований транспортировки в МПФС электронного потока во время переходных процессов работы ЭОС с кольцевым катодом и низковольтным бессеточным управлением током пучка, параметры которой представлены в таблицах 1,2.

Таблица 1. Параметры ЭОС

Таблица 2. Параметры МПФС

Ток пучка, мА	380,0	Амплитуда поля на оси, Гс	2100	
Ускоряющее напряжение,В	9000	Период МПФС, мм	25,7	
Микропервеанс, $MKA/B^{3/2}$	0,445	Параметр магнитного поля	0,9	
Диаметр катода, мм	3,7	Бриллюэновский радиус пучка в	0.254	
Диаметр канала, мм	2,0	МФС, мм	мм 0,354	
Тип катода	Импрегни-	Заполнение канала пучком		
	рованный	(без учета поперечных	0,354	
Плотность тока на катоде, A/cм ²	6,7	скоростей)		
Плотность тока в пучке, A/cм ²	41,6	Средний радиус пучка (с учетом	0,539	
Компрессия пучка по площади	22.4	поперечных скоростей), мм	0,559	
(бриллюэновская)	22,4	Реальное заполнение		
Компрессия пучка по площади	10	канала пучком (с учетом	0,539	
(реальная)	10	поперечных скоростей)		

В представленной ЭОС для транспортировки электронного пучка была использована МПФС с несинусоидальным распределением осевой компоненты индукции магнитного поля и значимой величиной третьей пространственной гармоники [2]. Такая МПФС позволила обеспечить устойчивую транспортировку потока при повышенных параметрах магнитного поля α , больших, чем критическое значение, равное 0,67.

Целью работы являлась модернизация ЭОС данной ЛБВ, при которой катодный ток мог быть увеличен в два раза, а транспортировка электронного потока в пролетном

канале того же диаметра, должна происходить в той же конструкции МПФС, что и в исходной ЛБВ. Используемая МПФС позволяла обеспечивать повышение амплитуд магнитного поля при увеличении размеров магнитов. Однако при заданном периоде МПФС, обусловленным ее конструктивным исполнением, величина параметра магнитного поля α , пропорционального квадрату произведения амплитуды магнитного поля, периода МПФС и обратно пропорционального ускоряющему напряжению, становилась существенно больше, что могло приводить к рискам попадания электронного потока в область параметрического резонанса. Таким образом, для получения требуемой ЭОС необходимо существенно увеличить компрессию электронного потока, формируемого электронной пушкой за счет увеличения диаметра катода и одновременно снизить угловой разброс электронов в электронном потоке, а также уменьшить период МПФС.

2. Постановка задачи и обсуждение результатов расчетов

Результаты расчетов формирования электронного потока и его последующей транспортировки в МПФС представлены на рис.1.

Рисунок 1. Траектории электронного потока в электронной пушке (a), распределение модуля осевой компоненты индукции магнитного поля в МПФС (б) и транспортировка электронного потока в рабочем режиме (в).

После проведения цикла расчетов была найдена конфигурация электродов электронной пушки с увеличенным током пучка и уменьшенным угловым разбросом (Рис. 2), которая позволила обеспечить транспортировку электронного потока в том же пролетном канале.

Рисунок 2. Траектории электронного потока в электронной пушке с увеличенным током I_0 =0.8 A (a)

При попытках уменьшения периода МПФС, оставляя неизменным внутренний диаметр трубки, на котором размещены наконечники, происходило уменьшение величины амплитуды третьей гармоники магнитного поля (рис. 3).

Рисунок 3. Распределение модуля осевой компоненты индукции магнитного поля в исходной конструкции МПФС при уменьшении периода.

Таким образом, необходимо определить иное взаиморасположение наконечников и магнитомягких втулок в МП Φ С, при котором относительная величина третьей гармоники осталась бы неизменной.

Была найдена конструкция МПФС, в которой внутренний диаметр втулки был выбран равным внутреннему диаметру наконечников, а внутренний диаметр наконечников был выбран равным внутреннему диаметру втулок.

Как следует из анализа рис. 4, в этом случае удалось обеспечить требуемое значение амплитуды третьей гармоники магнитного поля при уменьшенном периоде МПФС, а также требуемое значение модуля осевой компоненты индукции магнитного поля для обеспечения транспортировки электронного потока.

Рисунок 4. Распределение модуля осевой компоненты индукции магнитного поля в модернизированной МПФС (б). L=22.0 мм.

В результате расчетов была определена геометрия электродов, размеры катода, конфигурация магнитной системы с требуемой амплитудой магнитного пол на оси и параметром магнитного поля равном 1 (табл. 3-4).

Таблица 3. Параметры модернизированной ЭОС

модернизированной МПФС		
Амплитуда поля на оси, Гс	2600	
Период МПФС, мм	22	
Параметр магнитного поля	1.0	
Бриллюэновский радиус пучка в	0.415	
МФС, мм		
Заполнение канала пучком		
(без учета поперечных	0,415	
скоростей)		
Средний радиус пучка (с учетом	0.449	
	0,442	

поперечных скоростей), мм Реальное заполнение канала пучком (с учетом

поперечных скоростей)

Таблица 4. Параметры

0,449

Ток пучка, мА	800,0
Ускоряющее напряжение, В	9000
Микропервеанс, $мкA/B^{3/2}$	0,94
Диаметр катода, мм	5
Диаметр канала, мм	2,0
Тип катода	Импрегни-
	рованный
Плотность тока на катоде, A/cm^2	3,6
Плотность тока в пучке, A/см ²	125,8
Компрессия пучка по площади (бриллюэновская)	36,34
Компрессия пучка по площади (реальная)	31

Данная конфигурация позволяет транспортировать электронный пучок с током 0.8 A в канале диаметром 2,0 мм без токооседания (рис.5).

Рисунок 5. Транспортировка электронного потока в МПФС с уменьшенным периодом L=22.0 мм, сформированного электронной пушкой с увеличенным током катода.

Список литературы:

- 1. Филин Ю.Ю., Морев С.П., Коломийцева Н.М., Арион О.А., Комраков П.А., Соляников А.В. Использование коллиматора специальной формы в ЛБВ с кольцевым катодом и низковольтным бессеточным управлением в переходных режимах работы ЭОС. XI Всероссийская научно-техническая конференция «Электроника и микроэлектроника СВЧ». Сборник докладов. СПб, с.128-132.
- 2. Дармаев А.Н., Морев С.П. Повышение параметра магнитного поля в фокусирующих системах с негармоническим распределением магнитного поля / Актуальные проблемы электронного приборостроения. Материалы международной научно-технической конференции // Саратов. 2006. с. 382