УДК

Исследование транзисторной GaAs-гетероструктуры полевых транзисторов мм-диапазона длин волн на ее основе

С.Н. Карпов¹

¹Акционерное общество «Научно-производственное предприятие «ИСТОК» имени А.И. Шокина»

Аннотация: в данной работе представлены результаты исследования GaAsгетероструктур и полевых транзисторов мм-диапазона длин волн АО «НПП «Исток» им. Шокина». Предложена одномерная модель для оценки характеристик гетероструктур и вольт-амперных характеристик полевых транзисторов. Проведена апробация результатов моделирования и получено хорошее согласие с экспериментальными данными.

Ключевые слова: GaAs-гетероструктура, поверхностная плотность, подвижность электронов, напряжение перекрытия

1. Введение

В настоящее время большинство современных полевых транзисторов разрабатывается на основе GaN- и GaAs-гетероструктур. Увеличение удельной мощности, коэффициентов усиления и рабочих частот транзисторов СВЧ-диапазона длин волн является актуальной задачей. Существующие на данный момент САПР транзисторных гетероструктур не позволяют учитывать при моделировании их электрофизических свойств ряд квантовых явлений, что приводит к снижению точности прогнозирования характеристик разрабатываемых гетероструктур. В связи с математических моделей разработка прогнозирования характеристик ЭТИМ гетероструктур и полевых транзисторов на их основе является актуальной задачей. В работе будут рассмотрены характеристики GaAs-гетероструктуры и полевых транзисторов на ее основе.

2. Теоретический расчет

Основой математической модели для расчета электрофизических характеристик транзисторных гетероструктур является самосогласованная система уравнений Шредингера-Пуассона:

$$\begin{cases} -\frac{\hbar^2}{2} \frac{\partial}{\partial x} \left(\frac{1}{m(x)} \frac{\partial}{\partial x} \psi_i(x) \right) + U(x) \psi_i(x) = E_i \psi_i(x) \\ \varepsilon_0 \frac{\partial}{\partial x} \left(\varepsilon(x) \frac{\partial}{\partial x} \varphi(x) \right) = -e \left(N_d(x) - n(x) \right) \end{cases}$$
(1)

где m(x) – эффективная масса электронов в рассматриваемой гетероструктуре, кг; $\psi_i(x)$ –волновая функция i-ого энергетического уровня в структуре, м^{-1/2}; E_i – энергия i-го уровня, Дж; $\varphi(x)$ – потенциал в структуре, В; $U(x) = -e\varphi(x) + E_c(x)$ – профиль потенциальной энергии структуры, учитывающий разрыв зон $E_c(x)$, Дж; $\varepsilon(x)$ – диэлектрическая проницаемость структуры; N_d(x) – концентрация доноров в структуре, м⁻³; $n(x, \varphi)$ – концентрация свободных носителей заряда (электронов) в структуре, м⁻³; $\hbar = 1.0546 \cdot 10^{-34}$ – постоянная Планка, Дж/с; $\hbar = 1.602 \cdot 10^{-19}$ – элементарный заряд, Кл; $\varepsilon_0 = 8.85 \cdot 10^{-12}$ – электрическая постоянная, Ф/м. Зонные диаграмма и профиль носителей заряда исследуемой структуры при нулевом смещении на затворе представлен на рисунке 1.

Рисунок 1. Зонная диаграмма (сплошная линия) и концентрация свободных носителей (пунктирная линия) в гетероструктуре.

На рисунке 2 продемонстрирована результаты моделирования зависимости поверхностной концентрации электронов в канале гетероструктуры при различных напряжениях на затворе.

Рисунок 2. Поверхностная концентрация носителей заряда в канале гетероструктуры.

Для открытого затвора оценка поверхностной плотности электронов в канале составила $n_s = 2.37 \cdot 10^{12}$ см⁻². Для данной гетероструктуры была проведена оценка напряжения перекрытия V_п. Критерием перекрытия являлось снижение n_s относительно открытого затвора в 100 раз:

$$V_{\rm II} = V \left(\frac{n_{s0}}{n_s v} = 100 \right). \tag{2}$$

По данному критерию для данной гетероструктуры $V_{\rm n} \approx 0.9$ В, что находится в хорошем согласии с экспериментальными данными.

Оценка эффективной подвижности носителей заряда в гетероструктуре проводилась по модели [1]:

$$\mu_{eff} = \frac{\int_{0}^{x_{end}} \mu(x)n(x)dx}{\int_{0}^{x_{end}} n(x)dx},$$
(3)

где $\mu(x)$ – подвижность электронов в гетероструктуре, м²/B · c.

Результаты моделирования эффективной подвижности носителей заряда при различных V_3 представлены на рисунке 3. Можно выделить линейную область зависимости при $V_3 = -0.1 \div 0.7$ В, в которой эффективная подвижность совпадает с подвижностью канала.

Кроме оценки $V_{\rm n}$ по выражению (2), имеется возможность оценить $V_{\rm n}$ по значению подвижности. В данном случае критерием является:

$$\mu_{eff}(V_3) = \mu_{buffer},\tag{4}$$

т.е такое V_3 , при котором основной вклад в подвижность будет вносить буферный слой, иными словами, при таком V_3 свободные носители заряда будут локализованы только в буфере. По такой оценке, $V_{\rm n} \approx 1.1$ В.

Рисунок 3. Эффективная подвижность электронов в гетероструктуре.

Расчет поверхностного сопротивления канала проводился по формуле [2]:

$$R_{sh}(V_3) = \frac{1}{e * n_s(V_3) * \mu_{eff}(V_3)}.$$
(5)

Оценка тока насыщения проводилась по следующей формуле:

$$I_{\rm Hac} = q n_s v_{\rm Hac},$$
(6)

где $v_{\text{нас}} = \left(1.23 \cdot \frac{X_{In}}{0.53} + 0.8\right) 10^7 \frac{\text{см}}{\text{с}}$ – скорость насыщения электронов в канале, X_{In} – мольная доля индия в канале [3,4].

Зависимость тока насыщения от напряжения на затворе и сравнение с экспериментальными данными для транзистора с заданной шириной затвора представлены на рисунке 4.

Рисунок 4. Ток насыщения в полевом транзисторе (красная пунктирная линия) и теоретический расчет (синяя сплошная линия)

Зависимость крутизны передаточной характеристики от напряжения на затворе представлена и сравнение экспериментальных данных для транзистора с заданной шириной затвора представлены на рисунке 5.

Рисунок 5. Ток насыщения в полевом транзисторе (красная пунктирная линия) и теоретический расчет (синяя сплошная линия)

3. Заключение

Разработанные методики в первом приближении позволяют оценить на этапе проектирования ток насыщения и крутизну полевых транзисторов, разрабатываемых на основе GaAs-гетероструктур. Проведенные расчеты крутизны и тока насыщения при заданной ширине затвора серийных образцов транзисторов мм-диапазона длин волн оказались в хорошем согласии с экспериментальными данными. Предложенная модель может быть использована для предсказания поведения характеристик проектируемых гетероструктур и полевых транзисторов на их основе.

Список литературы

- V.V.Vainberg, A.S. Pylypchuk, N.V. Baidus, B.N. Zvonkov. Electron mobility in the GaAs/InGaAs/GaAs quantum wells // Semiconductor Physics, Quantum Electronics & Optoelectronics. 2013. Vol. 16. No. 2. P. 152 161.
- 2. Lenka- T.R. Lenka, A.K. Panda. Characterisctics Study of 2DEG Transport Properties of AlGaN/GaN and AlGaAs/GaAs-based HEMT // Semiconductors. 2011. Vol. 45. No. 5. PP. 650-656.
- S.Qu, X. Wang, H.Xiao, C. Wang, C. Wang, L. Jiang, C. Feng, H. Chen, H. Yin, E. Peng, H. Kang, Z. Wang, X. Hou. Analysis of transconductance characteristic of AlGaN/GaN HEMTs with graded AlGaN layer // Eur. Phys. J. Appl. Phys. – 2014. – Vol. 6. – P.20101
- 4. R. Gupta, M.El. Nokali. A model for dual-channel high electron mobility transistors // Solid-State Electronics. - 1995. – Vol. 38. – No.1. – pp. 51-57