УДК 621.373.7

Измерение собственных параметров SMDкомпонентов в экранированной копланарной линии передачи

И.Н. Малышев¹, И.Г. Белков¹, Е.А. Колдина², Е.А. Лупанова³, С.М. Никулин³, В.В. Петров³

¹АО «НПО «ЭРКОН»

²ООО Арзамасское приборостроительное конструкторское бюро

³Нижегородский государственный технический университет им. Р.Е. Алексеева

Аннотация: в работе рассмотрены методы и техника измерения собственных параметров SMD-компонентов с учетом способов монтажа в экранированную копланарную линию передачи с частотно зависимым волновым сопротивлением. Предлагаются варианты схемных моделей SMD-резисторов, катушек индуктивности и конденсаторов в системах автоматизированного проектирования СВЧ устройств. Обсуждаются результаты измерений и 3D-моделирования.

Ключевые слова: SMD-компоненты, микрополосковая линия, копланарная линия, волновое сопротивление, S-параметры, собственный импеданс.

1. Введение

Определение собственных параметров SMD-компонентов (резисторов, конденсаторов, катушек индуктивности) для поверхностного монтажа имеет весьма важное значение для проектирования CBЧ устройств различного функционального назначения. Существенно, что собственные параметры SMD-компонентов весьма непросто отделить от микрополосковой линии передачи, в которой они были измерены. Процедура экстракции собственных параметров дает возможность широкого использования навесных компонентов в полосковых, копланарных и целевых линиях с различными изоляционными основаниями и различной геометрией их поперечного сечения.

Суть проблемы состоит в том, что собственные параметры SMD-компонентов определяют по результатам косвенных измерении S-параметров относительно их физических границ в коаксиальном канале. Для извлечения информации о собственном импедансе или адмитансе электронного компонента необходимо, вопервых, знать частотно-зависимое волновое сопротивление $Z_B(f)$ микрополосковой линии, в которой были выполнены измерения [1, 2], а, во-вторых, получать результат с учетом способа монтажа контролируемого изделия – в разрыве полоскового проводника, между полосковым проводником и экраном или в качестве оконечной нагрузки.

В докладе обсуждаются методы и техника измерения собственных параметров SMD-компонентов с учетом влияния на получаемую информацию частотнозависимого волнового сопротивления экранированной копланарной линии и способов монтажа. Приведены варианты схемных моделей SMD-компонентов (резисторов, катушек индуктивности и конденсаторов) в системах автоматизированного проектирования СВЧ устройств различного функционального назначения. Обсуждаются результаты экспериментальных исследований и 3D-моделирования, подтверждающие эффективность предлагаемых решений.

2. Методы и техника измерения собственных импедансов SMD-компонентов

Электронные SMD-компоненты, установленные в экранированной копланарной линии в оснастке с коаксиально-полосковыми переходами, являются источниками возникновения локальных не распространяющихся высших типов электромагнитных волн. Локальное возмущение электромагнитного поля определяется конструкцией, материалами и геометрией поперечного сечения линии передачи, а также способом монтажа электронного компонента – в разрыве полоскового проводника -а), между полосковым проводником и верхним экраном -б) или в качестве оконечной нагрузки - в), как показано на рисунке 1.

Рисунок 1. Оснастка с коаксиально-полосковыми переходами и варианты монтажа SMD - компонента в экранированную копланарную линию.

Собственные импедансы электронных компонентов при монтаже – а, б) определяют по результатам измерений анализаторами цепей LTR-методом их Sпараметров, а при монтаже – в) по коэффициенту отражения Г [1, 2]. Строго говоря, Sпараметры и коэффициент отражения Г надо определять не на физических границах контролируемого объекта, а на некотором расстоянии от него, где отсутствует локальное возмущение электромагнитного поля распространяющихся волн. Но не ясно как воспользоваться такой информацией для определения искомых собственных параметров. Экстракция коаксиально-полосковых переходов с отрезками регулярных позволяет трансформировать микрополосковых линий эффект локального возмущения электромагнитного поля, возникающий в окружающем пространстве SMD-компонента, в S-параметры или коэффициент отражения, определённые относительно физических границ контролируемого объекта.

При монтаже SMD-компонента между полосковым проводником и экраном контактные площадки отсутствуют и следует лишь исключить из измеренных S-параметров переходы и полосковые линии полностью (до вертикальной плоскости симметрии электронного компонента), а затем определить его коэффициент отражения и нормированный импеданс Z из соотношений¹:

$$\Gamma = 0.5 \left(S_{11} + \frac{S_{21}S_{12}}{1 - S_{22}} + \frac{S_{21}S_{12}}{1 - S_{11}} + S_{22} \right),$$

$$Z = (1 + \Gamma) / (1 - \Gamma).$$
(1)

При монтаже SMD-компонента в разрыве полосковой линии необходимо выполнить процедуру экстракции отрезков полосковой линии вместе с зазором в полосковом проводнике, находящимися под контролируемым объектом. С этой целью

¹ Существенно, что в определении Г используются все четыре S-параметра, уменьшающие погрешности позиционирования.

вначале определяют коэффициенты отражения Γ_1, Γ_2 и нормированные импедансы Z_1, Z_2 соответственно от контролируемого объекта и от полосковых линий, находящихся под объектом, с помощью соотношений, подобных (1), после чего определяют собственный нормированный импеданс Z SMD-компонента из соотношения:

$$Z = \frac{Z_1 Z_2}{Z_2 - Z_1}$$
(2)

При монтаже SMD-компонента в качестве оконечной нагрузки вначале по результатам измерений коэффициентов отражения в коаксиальном канале определяют коэффициенты отражения Γ_1, Γ_2 от контролируемого объекта и от отрезков микрополосковой линии с зазором в полосковом проводнике, находящихся под объектом, после чего в соответствии с (2) определяют собственный нормированный импеданс Z(f) как функцию частоты f, а его абсолютную величину - из соотношения:

$$Z_{smd}(f) = Z_B(f)Z \tag{3}$$

Здесь $Z_B(f)$ – волновое сопротивление микрополосковой линии, в которой выполнялись измерения.

Информация об импедансе SMD-компонентов необходима при автоматизированном проектировании интегральных CBЧ устройств. Эту информацию следует представлять в виде схемных элементов, моделирующих их импеданс или адмитанс. Так, например, на рисунке 2 показан фрагмент электрической схемы в САПР AWR с моделью IMPED SMD-компонента типоразмера 0402. Модель IMPED моделирует импеданс $Z_{smd}(f) = \text{Re}[Z_{smd}(f)] + i \text{Im}[Z_{smd}(f)]$ резистора или катушки индуктивности двумя аналитическими функциями частоты *f*:

$$\operatorname{Re}\left[Z_{smd}\left(f\right)\right] = \sum_{k=1}^{K} a_{k} f^{k-1},$$

$$\operatorname{Im}\left[Z_{smd}\left(f\right)\right] = \sum_{k=1}^{K} b_{k} f^{k-1}.$$
(4)

Рисунок 2. Фрагмент электрической схемы в САПР AWR с моделью IMPED SMD-компонента типоразмера 0402

Для SMD-конденсаторов следует использовать аналитическую схемную модель ADMIT $Y_{smd}(f) = \operatorname{Re}[G_{smd}(f)] + i \operatorname{Im}[B_{smd}(f)]$. Приведенный пример показывает, что для описания схемной модели SMD-компонента потребуется порядка 10 чисел a_k, b_k , задающих его собственный импеданс или адмитанс. Схемную модель SMD- компонента можно сформировать и в виде двухпортовой цепи с помощью s2p-файла в формате «Touchstone». Этот вариант на рисунке 2 представлен внешним блоком SUBCKT «Schematic R 50 Om», который так же, как и элемент IMPED, можно подключить к контактным площадкам, состоящим из двух схемных моделей MLIN и MGAPX.

Еще один вариант схемных моделей RLC SMD-компонентов приведен на рисунке 3. В отличие от хорошо известной схемы элементы La ,Ca и Lb ,Cb моделируют не контактные площадки, а локальное возмущение электромагнитного поля, окружающего контролируемый объект с собственными параметрами R, L и C, причем некоторые из элементов приведенной схемы могут оказаться равными нулю в зависимости от типа компонента (резистор, катушка индуктивности или конденсатор) и способа его монтажа на схеме проектируемого устройства.

Рисунок 3. Схемная RLC модель SMD-компонента

3.Экспериментальные результаты и 3D-моделирование

В докладе на примере резистора P1-160 50 Ом типоразмера 0402 обсуждается влияние способов монтажа и частотно зависимого волнового сопротивления экранированной копланарной линии на собственные импедансы SMD-компонентов. Измерения выполнялись в копланарных линиях передачи длиной 120 мм, толщиной изоляционного основания 0,254 мм, шириной и зазором между полосковым проводником и экраном соответственно 0,45 и 0,31 мм, изготовленных из материала RO4350B². На рисунке 4 приведены графики частотных зависимостей волнового сопротивления копланарной линии $Z_B(f)$, реальных и мнимых значений импеданса SMD-резистора P1-160 50 Ом.

Рисунок 4. Частотные зависимости волнового сопротивления линии, реальных (слева) и мнимых (справа) значений импеданса резистора P1-160 50 Ом для разных способов монтажа (линии синего, красного и зеленого цветов) с учетом и без учета частотно-зависимого волнового сопротивления полосковой линии.

Способы измерения волнового сопротивления $Z_B(f)$ микрополосковой линии, как функции частоты *f*, рассмотрены в работах [1, 2]. При обработке данных результаты были получены для двух вариантов – в предположении о том, что волновое

² Измерения выполнены с помощью анализатора цепей Кобальт С2420 в АО «НПО «ЭРКОН».

сопротивление линии не зависит от частоты и имеет стандартную величину 50 Ом и с учетом частотной зависимости $Z_B(f)$, найденной в ходе эксперимента. Учет частотной зависимости волнового сопротивления экранированной копланарной линии и способов монтажа наиболее заметно проявляются в реальной части импеданса SMD-резистора. Достоверность экспериментальных результатов подтверждает и 3D-моделирование в САПР HFSS. На рисунке 4 приведены результаты моделирования экспериментальных данных при монтаже резистора в разрыве полоскового проводника линии стандартным способом и способом «перевернутого кристалла».

Рисунок 4. Частотные зависимости волнового сопротивления, реальных (слева) и мнимых (справа) значений импеданса 3D-модели резистора P1-160 50 Ом для монтажа в разрыве экранированной копланарной линии стандартным способом (линии синего цвета) и способом «перевернутого кристалла» (линии черного цвета).

Волновое сопротивление экранированной копланарной линии средствами HFSS удается получить существенно ближе к стандартной величине 50 Ом ввиду точно известной величины относительной диэлектрической проницаемости изоляционного основания. Сравнение экспериментальных результатов с результатами 3D-моделирования показало практически точное совпадение реальной и мнимой частей импеданса резистора. Помимо рассмотренных факторов влияния на частотную зависимость импеданса SMD-компонентов в случае пленочных резисторов следует отметить и еще одну зависимость, обусловленную положением резистивной пленки на верхней или нижней поверхности изоляционного основания. Заметное уменьшение частотной зависимости импеданса резистора при монтаже способом «перевернутого кристалла» косвенно подтверждает достоверность получаемых результатов.

4. Заключение

Результаты данной работы показывают, что S-параметры SMD-компонентов, определенные средствами измерений относительно физических границ в полосковых линиях передачи с неконтролируемой величиной частотно-зависимого волнового сопротивления являются неполными и не могут быть продуктивно использованы в средствах автоматизированного проектирования. Поэтому следует определять собственные импедансы и адмитансы электронных компонентов с учетом способов монтажа и с экстракцией полосковых проводников, контактирующих с охватывающими контактами.

Список литературы

- 1. Лупанова Е.А., Никулин С.М. Метод определения собственных параметров полосковых линий передачи // Измерительная техника, 2021. №.5. С. 47 -52.
- 2. Лупанова Е.А., Никулин С.М. Измерение волнового сопротивления микрополосковой линии векторным анализатором цепей // Измерительная техника, 2022. №.5. С. 62 68.