Применение off-wafer калибровки в комплексной задаче по метрологическому обеспечению измерений на подложках

И.М. Малай, А.В. Пивак, И.П. Чирков

вниифтри

Аннотация: в данной работе проведен анализ метрологических задач, необходимых для построения специального эталона волнового сопротивления копланарных линий. Измерены меры с различной топологией и апробирована процедура коррекции off-wafer калибровки по методу шунтирующей емкости. Получены оценки достижимых погрешностей.

Ключевые слова: подложки, копланар, погрешность, меры

1. Введение

Потребности измерений характеристик СВЧ устройств, особенно элементов компонентной базы, на этапах их разработки и производства все чаще формируются не со стандартными соединителями, а с контактными площадками в копланарной линии передачи непосредственно на подложке. Во многих работах [1] показана важность решения метрологических задач в этом направлении измерений для получения качественных результатов, выраженных в принятых единицах с указанием сведений о погрешности или точности. Более того, в результате серии европейских проектов в РТВ (Германия) в настоящий момент уже открыт сервис по прослеживаемым измерениям на подложках до 110 ГГц и по калибровке коммерческих калибровочных подложек [2]. Представляется необходимым в короткие сроки создать специальный эталон волнового сопротивления копланарных линий во ФГУП ВНИИФТРИ обеспечения единства измерений В микроэлектронной промышленности при измерениях на подложках. В статье представлены первые результаты исследований по данной теме, сделанные в рамках инициативной работы.

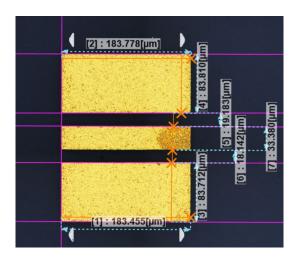
2. Прослеживаемость измерений на подложках

В основе общепризнанного подхода по прослеживаемости измерений на подложках к основным единицам системы SI лежит модель Хайнриха для копланарного волновода [3]. Эта модель связывает физические свойства подложки (геометрию проводников, их проводимость и диэлектрическую проницаемость подложки) с ее электрическими параметрами. Применение аналитической модели, а не ЭМ-моделирования позволяет упростить в дальнейшем расчеты погрешностей при измерениях. Здесь надо отметить, что модель Хайнриха была разработана в 90-ые годы, после которых ЭМ-моделирование сделало много шагов вперед. Тем не менее, современны тенденции состоят В объединении результатов, аналитически, при моделировании и экспериментально. Именно такой подход применен в данной работе для построения модели измерений, которая объединяет модель Хайнриха и алгоритмы оптимизационных калибровок, позволяющих определять постоянную распространения линии непосредственно по измерениям.

При наличии хорошо изученной калибровочной подложки и при условии, что ее дизайн соответствуют рекомендациям PlanarCal [4], можно осуществить привязку этой подложки к эталонам длины и свойств материалов, затем осуществить калибровку

зондовой станции и передать размер единицы волнового сопротивления копланара на другую пластину или провести измерения тестируемого устройства. Решение задачи сопряжения измерений параметров калибровочных мер на одной пластине с результатами измерений параметров объектов на другой пластине в литературе принято называть off-wafer калибровкой. Здесь возникает первое ограничение, связанное определением волнового сопротивления. Корректность передачи/измерения будет соблюдена только в случае, если топология и материал эталонной подложки и тестируемого устройства совпадают. Понятно, что из-за отсутствия стандартизации для копланарных волноводов, такое условие на практике не выполнимо. Соответственно, либо все следующие измерения должны быть привязаны к одной единственной пластине (де-факто стандартизация сверху), либо должен существовать набор различных эталонных пластин, перекрывающих основные используемые промышленностью варианты, либо должна существовать процедура компенсации при переходе с одной подложки на другую. Причем, вариант комбинации второго и третьего подходов видится наиболее перспективным для России.

По сведениям авторов, в настоящее время микроэлектронная промышленность активно использует технологии SiGe и A3B5 в диапазоне частот до 50 ГГц, ведутся перспективные исследования на диапазон частот до 140 ГГц. В первом приближении влияние некоторых факторов в разработанной модели измерений на частотах до 50 ГГц пренебрежимо мало, что позволяет существенно сократить объем исследований для получения оценок погрешностей измерений. К таким факторам относятся:


- различные конструкции пробников;
- граничные условия, определяемые материалом держателя подложки;
- потери на излучение;
- эффекты связи с соседними элементами.

3. Экспериментальные исследования

Для экспериментальных исследований использовался набор калибровочных пластин с одним и тем же материалом основания (оксид алюминия) с покрытыми золотом копланарными волноводами различной геометрии.

При производстве коммерческих калибровочных подложек обычно используются фотошаблоны с дискретным шагом не менее 1 мкм и техпроцессы с погрешностью до 1 мкм, что может давать разбросы параметров линий относительно номинальных-расчетных до 1,5 мкм как по длине линии, так и в зависимости от расположения на пластине. Поэтому измерения параметров геометрии копланарных волноводов, требуемых для модели Хайнриха, не вызывают какой-либо технической трудности, т.к существует большое количество средств измерений геометрических величин на основе оптических микроскопов с достижимыми погрешностями в десятки нанометров. При этом микроскопы с функциями 2,5- или 3- D позволяют также с требуемой точностью измерить и толщину проводника.

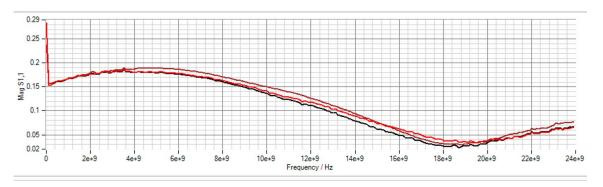
Результаты измерений некоторых подложек представлены на рисунке 1 и в таблице 1.

Рисунок 1. Пример измерения геометрических размеров для подложки TCS.

Таблица 1. Параметры подложек

Наименование пластины	Ширина центрального проводника, мкм	Ширина зазора, мкм	Ширина земляного проводника, мкм	Толщина проводника, мкм	Погонная емкость, пФ/см
AC-2new	47	27	280	4,5	1,486
TCS	32	20	80	3,5	1,442
RS	25,5	15	150	0,4	1,445

Измерения диэлектрической проницаемости является более сложной задачей, в основном из-за недостатка средств измерений, прослеживаемых к национальным эталонам средств измерений. Надо отметить, что и самих национальных эталонов не так много. По данным МБМВ на настоящий момент СМС задекларировано лишь тремя странами. Дополнительные трудности возникают из-за требований к образцам, которые предъявляются этими средствами измерений. Образцы должны быть достаточно большими (пластины до нескольких сантиметров в диаметре). Это связано с минимальным «пятном контакта» в резонаторах, как наиболее точных измерителях диэлектрической проницаемости и малых значений тангенса угла потерь. Данное условие приводит на практике к тому, что необходимо использовать изотропные по диэлектрической проницаемости материалы подложки и с минимальной частотной зависимостью.


Была проведена серия измерений «чистых» пластин для производства подложек, используемых в эксперименте, а также неразрезанного керамического куба. Для повышения точности получаемых результатов применялась комбинация различных средств измерения диэлектрической проницаемости (дискретные измерения на щелевом и двух зеркальном резонаторах, широкополосные — с помощью коаксиального пробника и в свободном пространстве), а также измерения в расширенном диапазоне частот (до 110 ГГц). По результатам можно считать, что материал исследованных подложек является изотропным, а его диэлектрическая проницаемость практически не имеет частотной зависимости со средним значением 9,95±0,1.

Полученные оценки погрешностей по геометрическим и электрофизическим параметрам подложек и копланарных линий передачи в дальнейшем позволяют по модели Хайнриха рассчитать оценку погрешности воспроизведения волнового сопротивления копланарной линии передачи для «эталонной» подложки.

Измерения характеристик копланарных линий на СВЧ проводились для трех подложек. Совокупные измерения нескорректированных s-параметров («сырых») 6 линий различной длины, мер короткого замыкания и параметров switching terms выполнялись для каждой из подложек. Кроме того, для реализации алгоритмов offwafer калибровки проводились измерения перемычки с открытым концом. По полученному набору значений проводилась следующая математическая обработка:

- выполнение NIST mTRL [5] калибровки для каждой из пластин;
- коррекция длинной линии каждой из пластин по результатам калибровки, в дальнейшем эти данные используются как опорные;
- коррекция длинной линии с «другой» пластины по результатам калибровки в «основной» пластине;
- сравнение такой коррекции с опорными данными, которое показывает небольшое, хотя и ожидаемое (пластины с похожим эпсилон, но разной геометрией) расхождение;
- применение off-wafer коррекции по методу шунтирующей емкости [6], где шунтирующая емкость определялась из измерений перемычки с открытым концом.

Результаты с применением off-wafer коррекции и без нее приведены на рисунке 2.

Рисунок 2. Результаты измерения коэффициента отражения длинной линии RS при калибровке в RS (коричневая), в TCS (черная) и с off-wafer коррекцией (красная, 3фФ).

Выполненные расчеты позволили оценить составляющие погрешности измерений тестируемого устройства при применении off-wafer калибровок, приведенные в таблипе 2.

Таблица 2. Оценки составляющих погрешностей при измерении коэффициента отражения

Погрешность «эталонной» подложки	Погрешность определения шунтирующей емкости	Погрешность метода калибровки	Случайная погрешность
0,03	0,03	0,005	0,003

Разработанная модель измерений с учетом полученных оценок составляющих погрешности и оговоренных выше условий измерений позволяет осуществить расчет суммарной погрешности значений коэффициента отражения измеряемого устройства в диапазоне частот до 50 ГГц. Для исследованных пластин суммарная погрешность не превышает 0,05. В дальнейшем планируется осуществлять off-wafer коррекцию по более сложным моделям, обеспечивающим увеличение точности [7].

3. Заключение

Выполнен пробный цикл измерений волнового сопротивления копланарных волноводов, включая исследования геометрических размеров проводников, диэлектрической проницаемости подложек, алгоритмов расчетов on-wafer и off-wafer калибровок. Анализ полученных результатов показывает, что для построения специального эталона волнового сопротивления копланарных волноводов существует хороший задел в виде отработанных алгоритмов калибровки и измерений. При этом для передачи размера единицы величины в условиях различной топологии и\или материала подложек на измеряемом устройстве желательно наличие меры холостого хода или перемычки.

Список литературы

- 1. Бондаренко А.С., Малай И.М. Состояние и перспективы развития метрологического обеспечения измерений на подложках // 5ая Международная научная конференция «Электронная компонентная база и микроэлектронные модули». Сборник тезисов. 2019. С. 472-474.
- 2. Arz U. et al. Traceable Coplanar Waveguide Calibrations on Fused Silica Substrates up to 110 GHz //IEEE Transactions on Microwave Theory and Techniques. 2019. T. 67. №. 6. C. 2423-2432.
- 3. Heinrich W. Quasi-TEM description of MMIC coplanar lines including conductor-loss effects//IEEE Transactions on Microwave Theory and Techniques. 1993. T. 41. №. 1. C. 45-52.
- 4. Arz U. et al. Guidelines for the design of calibration substrates, including the suppression of parasitic modes for frequencies up to and including 325 GHz. EMPIR 14IND02-PlanarCal, 2018.
- 5. Marks R. A multiline method of network analyzer calibration // IEEE Transactions on Microwave Theory and Techniques. 1991. T. 39. №. 7. C. 1205-1215.
- 6. Williams D., Marks R. Compensation for Substrate Permittivity in Probe-Tip Calibration//44th ARFTG Conference Digest − 1994. №. 26. C. 20-30.
- 7. G.Carchon. et al. Compensating differences between measurement and calibration wafer in probe-tip calibrations//IEEE MTT-S International Microwave Symposium digest 2002. №3. C.1837-1840.