УДК 537.86, 537.87

Многолучевые клистроны с радиальным расположением лучей

А.В. Галдецкий, Н.А. Голованов

АО «НПП «Исток» им. Шокина»

Аннотация: Рассмотрен новый класс мощных клистронов для ускорительной техники и технические решения, обеспечивающие высокие электрические параметры прибора: кольцевые резонаторы с селекцией мод, электронное зеркало в коллекторе. В результате возможно достижение выходной мощности 26.5 МВт при напряжении питания 58 кВ.

Ключевые слова: многолучевой клистрон, электронное зеркало, кольцевой резонатор, селекция мод, реверсная магнитная система.

1. Введение

Клистроны не имеют альтернатив в качестве усилителей СВЧ излучения мультимегаваттного уровня для использования в ускорительной технике, медицине, радиолокации и других применениях [1; 2]. При этом повышение выходной мощности традиционных однолучевых клистронов сопровождается ростом напряжения питания до сотен киловольт, что приводит к значительному увеличению длины прибора, требует громоздкой электрической изоляции, мер защиты от ионизирующего излучения. Очевидно, что с ростом мощности для сохранения умеренного напряжения катода необходимо повышать ток электронного потока. В частности, развивается путь повышения выходной мощности при ограниченном напряжении катода за счет увеличения количества лучей (и поперечных размеров области взаимодействия) при сохранении низкого первеанса отдельных лучей [3; 4]. При этом в традиционных многолучевых клистронах (МЛК) с параллельными лучами и тороидальными резонаторами диаметр области взаимодействия (и диаметр катода) не превышает $\sim \lambda/2$, где λ – рабочая длина волны, что лимитирует число лучей [5]. В приборах с кольцевыми резонаторами число лучей ограничено сгущением спектра собственных колебаний резонаторов и допустимыми размерами катода. В обоих случаях увеличение токов лучей лимитировано из-за плотного расположения парциальных катодов, недостаточной площади эмиссии и ограничения плотности токоотбора требованиями по долговечности.

Поэтому исследования новых способов повышения мощности клистронов за счет повышения общей площади эмиссии и тока пучков являются актуальной задачей. На это направлены работы по созданию криволинейных пучков [6-9], которые пока не получили развития из-за сложной оптики.

В работе рассмотрен вариант клистрона с радиальным расположением лучей и кольцевыми резонаторами. При этом, в отличие от [10; 11], применены цилиндрических индивидуальные каналы для пучков, что обеспечивает развязку отдельных резонаторов, а парциальные катоды высокочастотную расположены на периферии прибора. В результате появляется возможность существенного увеличения площади эмиссии при сохранении прямолинейности электронных пучков (в отличие от [6-9]), а каждый луч находится на пересечении двух плоскостей симметрии магнитной системы, что существенно облегчает его транспортировку. Перед последним резонатором индивидуальные каналы сливаются, образуя единый кольцевой канал с единым радиальным потоком (Рисунок 1).

2. Магнитная и электронно-оптическая системы клистрона

Реверсная магнитная фокусирующая система (Рисунок 1) содержит пять полупериодов (по числу кольцевых резонаторов) с постоянными магнитами из самарий-кобальта КС-25 сечением 25х20 мм. Во всех полюсных наконечниках выполнены индивидуальные отверстия под каналы, кроме последнего, где имеется единый канал под все пучки.

Рисунок 1. Схема клистрона в разрезе. Синим и красным цветом обозначены полюса магнитов, серым – полюсные наконечники реверсной фокусирующей системы, желтым – резонаторный блок и коллектор.

Геометрия магнитной системы подбиралась под нужный профиль поля (Рис. 2).

Рисунок 2. Профиль магнитного поля.

Электронные пучки генерируются индивидуальными простыми диодными пушками (Рисунок 3) и распространяются в отдельных каналах вплоть до коллектора, так что достаточно моделировать только один пучок.

Рисунок 3. а) Электронный пучок в парциальной пушке; б) электронный пучок в РПФС.

Параметры оптической системы представлены в Таблице 1.

число лучей	72
ускоряющее напряжение, кВ	58
ток парциального луча, А	11.2
подводимая мощность, МВт	46.7
первеанс на луч, мкА/В3/2	0.8
амплитуда магнитного поля, Гс	1500
число полупериодов МП	5
диаметр эмиттера, мм	10 (18)
плотность токоотбора, А/см2	14 (4.5)

Таблица 1. Параметры оптической системы многолучевого клистрона.

3. Резонаторная система

Резонаторный блок состоит из пяти сверхразмерных кольцевых резонаторов (Рисунок 4), работающих на моде H₀₀₂. Расчёт собственных типов колебаний исходной конструкции резонатора демонстрирует густой спектр (Рисунок 5а), который не получается разредить с помощью изменения геометрии или путём внесения в резонансную полость дополнительных элементов.

Предложенная селекция мод основана на том, что для рабочего, аксиальносимметричного типа колебаний азимутальные компоненты токов отсутствуют. Поэтому в резонаторе можно разместить поглощающий материал, закрытый экраном с щелями связи, параллельными радиальным плоскостям резонатора. Это позволяет значительно понизить собственные добротности всех азимутально-несимметричных видов, практически не влияя на добротность рабочего, аксиально-симметричных (Рисунок 5б). Наиболее эффективно разместить щели связи с поглотителем в области максимальных азимутальных токов нерабочих мод. Именно поэтому в конструкцию резонатора введен дополнительный, балластный зазор, и в качестве рабочей моды выбрана мода H₀₀₂ (Рисунок 4).

Рисунок 4. а) кольцевой резонатор (вакуумная часть), б) его сечение с полостью для поглотителя.

Рисунок 5. Зависимость добротности от частоты первых 100 собственных колебаний кольцевого резонатора при отсутствии поглотителя (а) и с поглотителем (б).

Благодаря предпринятым мерам по селекции мод удалось понизить собственную добротность неаксиальных мод до уровня ~5-25 (при собственной добротности рабочей моды ~4500), что достаточно для стабильной работы клистрона. Аксиальносимметричная нерабочая мода H_{001} рассмотренным методом селекции не подавляется, но ее частота ~1.8 ГГц находится далеко от рабочей полосы, поэтому она также не влияет на работу клистрона.

4. Коллектор

Для распределения радиально направленных отработанных пучков на большую поверхность коллектора необходимо сильное отклоняющее электрическое поле. Оно создается электронным зеркалом – специальным изолированным электродом, потенциал которого формируется за счет токоперехвата пучка в самом начале импульса тока и определяется максимальной энергией электронов (Рисунок ба). В результате удается отклонить траектории электронов более чем на 90° (Рисунок бб). Токовое зеркало создает тормозящее поле на всей поверхности коллектора, подавляя эмиссию вторичных электронов. Доля отраженных электронов составляет ~ 0.1%. Средняя плотность мощности токооседания при скважности 1000 не превышает 200 Вт/см² (Рисунок 6в), что оказывается приемлемым для жидкостной системы охлаждения.

Рисунок 6. Разрез коллектора с отклоняющим электродом (а), распределение траекторий в коллекторе (б), профиль плотности тепловыделения на стенках коллектора (максимальная величина ~200 BT/см²)

4. Расчет пространства взаимодействия

Расчёт пространства взаимодействия электронного потока с полями резонаторной системы проводился в одномерном однолучевом приближении (пучки считались идентичными). Заполнение канала пучком принято равным 60%. В результате оптимизации получены выходные характеристики на центральной частоте, а также рассчитаны распределение фазовых траекторий электронов вдоль пространства взаимодействия клистрона, получено распределение амплитуды первой гармоники тока (Рисунок 7).

Рисунок 7. Распределение фазовых траекторий электронов вдоль пространства взаимодействия клистрона (а). Распределение амплитуды первой гармоники тока (б).

Гармоника тока достигает величины 1.6, что позволяет обеспечить в МЛК Sдиапазона СВЧ мощность не менее 26.5 МВт. При этом КПД составляет 57%, а коэффициент усиления 50 дБ при ускоряющем напряжении 58 кВ и токе пучка 11.2 А. Сравнение расчетных параметров рассмотренного клистрона с аналогами приведено в Таблице 2.

	Радиальный клистрон	Прототип №1, КИУ-15	Прототип № 2, КИУ-147А
Рабочая частота f_0 , ГГц		2.856	
Напряжение катода <i>U</i> ₀ , кВ	58	250	52
Ток на луч <i>I</i> ₀ , А	11.2	225	5.8
Суммарный ток I_{Σ} , А	806.4	225	230
Парциальный микропервеанс	0.8	1.8	0.5
$p_{\mu 1},\;$ мкА/В $^{1.5}$			
Число лучей	72	1	40
Число резонаторов	5 (кольцевые)	5 (тороидальные)	6 (кольцевые)
Входная мощность <i>Р</i> _{вх} , Вт	288	270	60
Выходная мощность Р _{вых} , МВт	26.5	24.9	6
КПД, %	57	44	50
Коэффициент усиления К _v , дБ	50	50	50

Таблица 2. Сопоставление результатов расчёта радиального клистрона с аналогами в S диапазоне

Заключение

До настоящего времени сверхмощные клистроны для ускорителей строились на основе тороидальных резонаторов (одно- и многолучевых) или многолучевых кольцевых резонаторов с модой E₀₁₀. Во всех случая пучки расположены параллельно оси прибора, что ограничивает площадь эмиссии, общий ток и мощность клистрона. В данной работе рассмотрен новый класс клистронов с радиальным расположением

лучей. Благодаря такой конфигурации, а также новым техническим решениям: селекции мод в кольцевом резонаторе с рабочей модой H₀₀₂, электронному зеркалу в коллекторе, возможно обеспечить высокие параметры клистрона: выходная мощность 26.5 МВт при компактной конструкции, высоком кпд 57%, низком напряжении питания 58 кВ. Возможно дальнейшее повышение кпд и мощности прибора за счет использования более эффективных методов группировки (BAC).

Список литературы

- 1. Фрейдович И.А., Балабанов А.К., Акимов П.И. и др.: Перспективы развития многолучевых клистронов. //Материалы III Всероссийской научно-технической конференция "Электроника и микроэлектроника СВЧ", г. С-Петербург, 2014 С. 25.
- 2. Борисов Л.М., Гельвич Э.А., Жарый Е.В. и др. Мощные многолучевые электровакуумные усилители СВЧ //Электронная техника, Сер. 1, «СВЧ-техника». 1993 №3. — С. 12-20.
- 3. Балабанов А.К., Косарев Р.А., Фрейдович И.А. и др. Многолучевой клистрон с кольцевыми резонаторами, работающими на виде колебаний Е_{0n0}. //Патент Россия № 2015118917, 2015.
- 4. Фрейдович И., Воробьев М. Особенности характеристик кольцевых резонаторов многолучевых клистронов //Электроника. НТБ 1998. № 2 С. 9-14.
- 5. Юнаков А.Н., Пугнин В.И. Проблемы и пути создания мощных широкополосных многолучевых клистронов в средней части сантиметрового диапазона длин волн //Электронная техника, Сер. 1, «СВЧ-техника». 2013. Т. 519. № 4. С. 64-67.
- 6. Ives L., Bui T., Read M. et al. Design of asymmetrical electron beam devices using computer optimization. //Proc. Vacuum Electronics Conference, 2009. IVEC '09. IEEE International. 2009 – C. 119-120.
- 7. Ives R.L., Attarian A., Tallis W. et al. Design of Doubly Convergent Multiple-Beam Electron Guns //IEEE Transactions on Plasma Science. 2010. T. 38. № 6. C. 1337-1344.
- 8. Галдецкий А.В., Голеницкий И.И., Духина Н.Г. и др. Многолучевая пушка, формирующая криволинейные электронные лучи с высокой сходимостью //Электронная техника сер. 1 «СВЧ техника». 2007. № 5(493). С. 17-20.
- 9. Гаврилов О.Ю., Дроздов С.С., Невский П.В. Многолучевая электронная пушка. Патент SU 1136666 A1, СССР, 1994
- 10. Forno M.D., Tantawi S.G., Ruth R.D. et al. Progress on design of radial klystrons. //Proc. 2016 IEEE International Vacuum Electronics Conference (IVEC). 2016 C. 1-2.
- 11. Wang S., Gong Y., Wei Y. et al. Study on the Radial-Sheet-Beam Electron Optical System //IEEE Transactions on Plasma Science. 2012. T. 40. № 12. C. 3442-3448.