УДК 537.86

Разработка модели элемента нелинейной магнонной логики «исключающее или»

Р.В. Гапончик, А.Б. Устинов

Санкт-Петербургский государственный электротехнический университет «ЛЭТИ»

Аннотация: Разработана модель нелинейного логического элемента, ревлизующего логическую функцию «исключающее или», на базе нелинейного магнонного фазовращателя принцип действия которого основан на эффекте наведенного нелинейного сдвига фазы спиновых волн (СВ) в пленках железо-иттриевого граната (ЖИГ).

Ключевые слова: нелинейный сдвиг фазы, логический элемент, нелинейные спиновые волны

1. Введение

В настоящее время одним из развивающихся направлений в разработке спинволновых приборов и устройств является магнонная логика [1] и физические резервуарные компьютеры [2-4]. На данном этапе предложено множество различных типов СВ логических элементов, принцип действия которых основан на управлении фазовым набегом СВ с помощью электрического тока [5]. К последним достижениям этой области можно отнести разработку нелинейных СВ логических элементов [6-7]. В этих работах показана возможность управления фазовым набегом СВ за счёт увеличения их амплитуды. Не так давно был предложен новый способ управления фазовым сдвигом СВ в нелинейном фазовращателе на основе плёнки ЖИГ, который заключается в управлении нелинейным сдвигом фазы рабочей СВ с помощью СВ накачки [8]. Также был исследован аналогичный способ управления, но уже в магнонном кристалле [9].

2. Результаты

Общая блок схема элемента магнонной логики, представлена на рисунке 1. Элемент имеет вид двухплечевой мостовой схемы. Схема состоит из делителя СВЧмощности, двух нелинейных СВ фазовращателей (НФВ) НФВ1 и НФВ2, сумматора СВЧ-мощности, а также полосно-пропускающих фильтров (ППФ). Полоснопропускающий фильтр используется для подавления сигнала накачки. Работа нелинейного логического элемента заключается в прохождении двух рабочих СВЧсигналов сравнительно малой амплитуды на частоте f_c в его разных плечах и приобретении разного или одинакового фазового сдвига. Далее два этих сигнала суммируются и интерферируют. Величина приобретенных в НФВ1 и НФВ2 сдвигов фазы управляется с помощью подачи сигнала накачки на частоте $f_{\rm H}$. В результате сложения рабочих сигналов с разными фазами происходит изменение уровня мощности выходного сигнала логического элемента. В зависимости от начального соотношения разности фаз интерферирующих сигналов такая схема может реализовывать ту или иную логическую функцию.

Рисунок 1. Блок-схема нелинейного элемента магнонной логики, управляемого сигналами накачки

Моделирование характеристик логического элемента проводилось с учетом модели наведенного нелинейного сдвига фазы СВ. Мощность выходного сигнала рассчитывалась по формуле для интерференции волн:

$$P_{c.npow1} = P_{npow1} + P_{npow2} + 2\sqrt{P_{npow1}P_{npow2}}\cos(\Delta\varphi), \qquad (1)$$
где

 P_{npoul1} и P_{npoul2} – мощности рабочих сигналов прошедших через первое и второе плечо, $\Delta \varphi = \varphi_1 + \varphi_{INL1} - \varphi_2 - \varphi_{INL2}$ – разность фаз складываемых сигналов, которая является функцией частоты и мощностей сигналов накачки $P_{\mu 1}$ и $P_{\mu 2}$, φ_1 и φ_2 – линейные фазовые набеги приобретаемые в НФВ1 и НФВ2, φ_{INL1} и φ_{INL2} – наведенные нелинейные сдвиги фазы в НФВ1 и НФВ2. Наведенный нелинейный сдвиг фазы СВ в нелинейных фазовращателях рассчитывался с помощью модели, представленной в работе [8].

Амплитудно-частотная характеристика логического элемента (по мощности) рассчитывалась по формуле:

$$H = \frac{P_{c.npout}}{P_{c.nad}}$$
(2)

где P_{nad} – мощность, подающаяся на вход интерферометра мощность.

Используя данный подход было промоделировано АЧХ магнонного логического элемента «исключающее или». Далее рассмотрим этот элемент.

Логическая функция «исключающее ИЛИ» реализуется путём подачи на НФВ1 и НФВ2 мощностей накачки в соответствии с таблицей истинности 1. Когда на НФВ1 подаётся мощность равная 0.01 отн.ед., на выходе логического элемента реализуется логическая «1», а когда подаётся мощность 0.001 отн.ед. – реализуется логический «0». Второй НФВ2 работает аналогично первому. Далее принцип действия повторяет то, что было описано выше. Два сигнала, с измененными фазами складываются в сумматоре и на выходе получается либо сигнал с мощностью ниже 0.5 – логический «0», либо сигнал с уровнем мощности выше 0.5 падающей – логическая «1», как показано на рисунке 2. Параметры, используемые при расчёте: тип волны – поверхностные CB, внешнее подмагничивающее поле H = 1094 Э, намагниченность насыщения пленки ЖИГ M = 1980 Гс, расстояние между антеннами в случае НФВ1 $d_1 = 3.01$ мм, а в случае НФВ2 $d_2 = 3$ мм, полуширина кривой ферромагнитного

резонанса $\Delta H = 0.6$ Э, толщина пленки ЖИГ L = 5.5 мкм. Частоты рабочего сигнала и сигнала накачки 5.368 ГГц и 5.275 ГГц, соответственно.

ΗΦΒ1	ΗΦΒ1	Выход
0	0	0
1	0	1
0	1	1
1	1	0

Таблица 1. Таблица истинности операции «исключающее или»

Рисунок 1. Блок-схема нелинейного элемента магнонной логики, управляемого сигналами накачки

4. Заключение

Разработанная модель демонстрирует возможность построения магнонного логического элемента «исключающее или», работающего на рабочей частоте 5.15 ГГц.

Исследование выполнено при финансовой поддержке РФФИ и ЯОПН (проект № 21-52-50006) и совета по грантам Президента Российской Федерации для государственной поддержки молодых российских учёных (Грант № МК1938.2020.8).

Список литературы

- 1. A. V. Chumak, "Magnon spintronics: Fundamentals of magnon-based computing," in *Spintronics Handbook: Spin Transport and Magnetism*, 2nd ed. (CRC Press, 2019), pp. 247–302.
- 2. S. Watt, M. Kostylev, Physical Review Applied. Vol. 13, pp. 034057 (2020).
- 3. S. Watt, M. Kostylev, A. B. Ustinov, Journal of Applied Physics. Vol. 129, pp. 044902 (2021).
- 4. S. Watt et. al. Physical Review Applied. Vol. 15, pp. 064060 (2021).
- 5. T. Schneider, A. A. Serga, B. Leven, B. Hillebrands, R. L. Stamps, and M. P. Kostylev, Applied Physics Letters. Vol. **92**, **pp**. 022505 (2008).
- 6. A.B. Ustinov, E. Lähderanta, M. Inoue, B.A. Kalinikos, IEEE Magnetics Letters. Vol. 10, pp. 5508204 (2019).
- 7. Q. Wang, M. Kewenig, M. Schneider et al., Nature Electronics. Vol. 3, pp. 765 (2020).
- 8. A. B. Ustinov, N. A. Kuznetsov, R. V. Haponchyk, E. Lähderanta, T. Goto, M. Inoue, Applied Physics Letters. Vol. 119, pp 192405 (2021).
- 9. Гапончик Р.В., Гото Т., Устинов А.Б. Тезисы докладов международной конференции ФизикаА.СПб, Стр. 342-343 (2022).