УДК 621.3.011.7

Применение нефостеровской отрицательной ёмкости для повышения управляемости варикапа

А.Д. Леонтьев, Д.В. Холодняк

Санкт-Петербургский государственный электротехнический университет «ЛЭТИ»

Аннотация: исследуется возможность повышения управляемости варикапа при включении последовательно с ним нефостеровской отрицательной ёмкости на основе конвертора отрицательного импеданса (КОИ), выполненного по схеме Линвилла. Показано, что при использовании в качестве управляющего элемента варикапа с КОИ, можно значительно расширить диапазон перестройки резонансной частоты колебательного контура при сопоставимой или большей добротности.

Ключевые слова: варикап, отрицательная ёмкость, конвертер отрицательного импеданса.

1. Введение

Электрически управляемые переменные ёмкости – варикапы – являются ключевыми элементами частотно-перестраиваемых СВЧ-устройств, таких как полосовые и режекторные фильтры [1]-[3], генераторы, управляемые напряжением [4] и т.п.

Принцип работы варикапа основан на управлении ёмкостью *p-n*-перехода путем изменения приложенного к нему обратного напряжения. Основными параметрами варикапов являются коэффициент перестройки ёмкости (управляемость) и добротность. Между управляемостью и добротностью существует компромисс – чем больше управляемость, тем ниже добротность [5]. Для большинства полупроводниковых варикапов значение управляемости, как правило, не превышает 12 [5], что, в свою очередь, ограничивает возможности частотной перестройки СВЧ-устройств, использующих такие управляющие элементы. По этой причине, например, в современных генераторах аналоговых СВЧ-сигналов, для перекрытия широкого рабочего диапазона частот, который может достигать 10 МГц – 67 ГГц, используются сложные схемы, состоящие из нескольких блоков синтезаторов частот, умножителей и делителей частоты, фильтров промежуточной частоты и других компонентов [6]. Повышение управляемости варикапов потенциально ведет к сокращению количества необходимых функциональных блоков в составе СВЧ-устройств и, тем самым, способствует улучшению массогабаритных и стоимостных параметров последних.

Возможность повышения управляемости полупроводникового варикапа путем включения последовательно с ним нефостеровской отрицательной ёмкости, реализованной с применением полевых транзисторов, продемонстрирована в [7].

В настоящей работе рассматривается применение отрицательной емкости на основе конвертора отрицательного импеданса (КОИ), выполненного на биполярных транзисторах по схеме Линвилла [8], для повышения управляемости варикапа в четыре раза. Показано, что использование в составе колебательного контура такого варикапа с повышенной управляемостью позволяет в два раза расширить диапазон перестройки резонансной частоты контура при сопоставимой или большей добротности.

2. Управляемость варикапа при подключении отрицательной ёмкости

Включение последовательно с варикапом отрицательной ёмкости C_n (рисунок 1-а), изменяет его управляемость как [7]:

$$n' = \frac{k}{k-1} \left(n - \frac{1}{k} \right) = \frac{nk-1}{k-1},$$
(1)

где $k = |C_n| / C_{max}$, $n = C_{max} / C_{min}$ – управляемость варикапа без отрицательной ёмкости, C_{max} и C_{min} –максимальное и минимальное значения ёмкости варикапа, соответственно. Таким образом, при значениях k, близких к единице, но превышающих её, управляемость варикапа с подключенной отрицательной ёмкостью в несколько раз превосходит его начальную управляемость: n' > n.

Рисунок 1. Последовательное соединение варикапа и отрицательной ёмкости (а), вольт-фарадная характеристика (б), зависимость добротности от частоты (в) до подключения отрицательной ёмкости (пунктир) и после (сплошные линии).

На рисунке 1-б представлены результаты моделирования вольт-фарадной характеристики кремниевого варикапа Skyworks SMV1231 (с параметрами $C_{max} = 2,35 \text{ пФ}$, $C_{min} = 0,47 \text{ пФ}$ и n = 5) до и после включения последовательно с ним идеальной отрицательной емкости $C_n = -3 \text{ пФ}$, что соответствует k = 1,28.

Результирующая ёмкость последовательного соединения варикапа и отрицательной ёмкости определяется как

$$C' = \frac{C_v C_n}{C_v + C_n},\tag{2}$$

где C_v – ёмкость варикапа. Из (2) для рассматриваемого случая получаем $C'_{\text{max}} = 10,85 \text{ п}\Phi \text{ и} C'_{\text{min}} = 0,56 \text{ п}\Phi$. Следовательно, $n' = C'_{\text{max}} / C'_{\text{min}} = 19,4$, т. е. управляемость увеличилась почти в четыре раза по сравнению с управляемостью такого же варикапа без отрицательной емкости. Следует, однако, отметить, что увеличение управляемости варикапа сопряжено с уменьшением добротности (рисунок 1-в). Это

соответствует общей тенденции, описанной в [5].

3. Реализация отрицательной ёмкости

Отрицательные ёмкости реализуются с помощью КОИ – активных цепей, которые преобразуют импеданс нагрузки во входной импеданс противоположного знака. На рисунке 2-а показан КОИ, выполненный по схеме Линвилла [8]. Назначение отдельных элементов схемы и вопросы проектирования КОИ подробно рассмотрены в [3].

Рисунок 2. Схема (а), входной импеданс (б), отрицательная ёмкость (в), добротность (г) и коэффициент шума (д) КОИ с ёмкостной нагрузкой ($R_{\rm H} = 0$ – сплошные линии) и КОИ с *RC*-нагрузкой ($R_{\rm H} = 22$ Ом – штриховые линии).

Для реализации отрицательной ёмкости $C_n = -3$ пФ использовался КОИ на SiGe биполярных транзисторах Infineon BFR840L3RHESD с критической частотой 75 ГГц. Емкости перекрестной связи и разделительные емкости равны C = 10 нФ. В цепях смещения применены резисторы R = 4,3 кОм. Напряжение питания составляет U = 40 В. Частотные характеристики КОИ представлены на рисунке 2. Используя в качестве нагрузки КОИ ёмкость $C_{\rm H} = 3,2$ пФ, можно реализовать требуемое значение отрицательной ёмкости с малой ошибкой в широком диапазоне частот (0,5...4 ГГц), как показано

на рисунке 2-в. При этом коэффициент шума слегка превышает 2 дБ (рисунок 2-д). Вещественная часть входного импеданса КОИ составляет около 20 Ом (рисунок 2-б), что является причиной низкой добротности такой отрицательной емкости (рисунок 2-г).

С целью увеличения добротности в нагрузку КОИ последовательно с емкостью $C_{\rm H}$ может быть включено сопротивление $R_{\rm H} = 22$ Ом, которое преобразуется ко входу КОИ в отрицательное, компенсируя тем самым вещественную часть входного импеданса КОИ [3], как показано штриховыми линиями на рисунке 2-б. В результате добротность отрицательной ёмкости увеличивается (рисунок 2-г). Однако это также приводит к ухудшению точности реализации отрицательной ёмкости в широкой полосе частот (рисунок 2-в) и увеличению коэффициента шума на 1 дБ (рисунок 2-д).

4. Характеристики варикапа с отрицательной ёмкостью на основе КОИ

На рисунке 3 приведены результаты моделирования характеристик последовательного соединения разработанной отрицательной ёмкости на основе КОИ и выбранного варикапа SMV1231. Вольт-фарадная характеристика такого соединения (рисунок 3-а) практически идентична характеристике варикапа с идеальной отрицательной ёмкостью (рисунок 1-б). При подключении к варикапа с идеальной управляемостью ожидаемо снижается. В то время как при соединении варикапа и КОИ с *RC*-нагрузкой добротность может быть сопоставима с добротностью варикапа до подключения отрицательной ёмкости (рисунок 3-б) и даже превосходить ее, если сопротивление $R_{\rm H}$ выбрано таким, что компенсирует еще и сопротивление варикапа. Следует отметить, что вещественная часть входного импеданса КОИ на низких частотах становится резко отрицательной (рисунок 3-в). Данный факт определяет нижнюю границу рабочего диапазона частот варикапа с подключенной отрицательной ёмкостью на основе КОИ.

Рисунок 3. Вольт-фарадная характеристика (а), добротность при $U_{cm} = 15$ В (б) и вещественная часть входного импеданса (в) варикапа (пунктир), последовательного соединения варикапа и КОИ с ёмкостной нагрузкой (сплошные линии), варикапа и КОИ с *RC*-нагрузкой (штриховые линии).

Для наглядной демонстрации повышения управляемости варикапа было проведено моделирование перестройки резонансной частоты последовательного колебательного контура, состоящего из индуктивности и варикапа, и такого же контура с добавлением отрицательной емкости на основе КОИ (рисунок 4-а). Значение индуктивности выбиралось таким, чтобы оба контура имели одинаковую резонансную частоту $f_{\text{max}} = 2,8 \ \Gamma \Gamma \mu$ при минимальном значении ёмкости варикапа, которое достигается при $U_{\text{см}} = 15 \ \text{B}$ (см. Таблицу). Исследуемые контуры были включены параллельно и нагружены на сопротивление 50 Ом по входу и выходу.

На рисунке 4-б представлена частотная зависимость модуля коэффициента передачи последовательного колебательного контура для трех разных случаев: с варикапом без КОИ; с варикапом и КОИ; с варикапом и КОИ с компенсацией сопротивления варикапа. Поскольку резонансная частота контура обратно пропорциональна квадратному корню из ёмкости варикапа, увеличение управляемости варикапа ведет к расширению диапазона перестройки резонансной частоты. Включение последовательно с варикапом SMV1231 КОИ, реализующего отрицательную ёмкость $C_n = -3$ пФ, расширяет диапазон перестройки резонансной частоты контура в два раза. При этом использование в составе КОИ *RC*-нагрузки позволяет компенсировать изменение добротности контура в обмен на незначительное (~2,5%) уменьшение выигрыша в перестройке резонансной частоты (см. Таблицу).

Рисунок 4. Схема (а), частотная зависимость модуля коэффициента передачи (б) и фазы НДФ (в) последовательного колебательный контура, состоящего из: индуктивности, варикапа и КОИ с *RC*-нагрузкой (штриховые линии); индуктивности, варикапа и КОИ с ёмкостной нагрузкой (сплошные линии); индуктивности и варикапа без КОИ (пунктир).

Использование КОИ сопряжено с необходимостью анализа и обеспечения устойчивости, т. к. цепь КОИ представляет собой усилитель с положительной обратной связью и априори является неустойчивой.

Контур	n	f _{min} (ГГц)	<i>f</i> max (ГГц)	fmax / fmin	$Q(f_{min})$	$Q(f_{max})$
6,4 нГн + SMV1231	5	1,25	2,8	2,24	16	73
5,2 нГн + SMV1231 + КОИ ($R_{\rm H} = 0$)	20,4	0,62	2,8	4,52	1,5	4
5 нГн + SMV1231 + КОИ ($R_{\rm H} = 22$ Ом)	19,1	0,64	2,8	4,37	98	189

Таблица. Сравнительные характеристики колебательных контуров с варикапами

Как было показано выше, управляемость варикапа возрастает при k > 1, т.е. когда $|C_n| > C_{max}$. Согласно (2) результирующая ёмкость последовательного соединения варикапа и отрицательной ёмкости тогда положительна (C' > 0), и, следовательно, цепь устойчива. Данный вывод подтверждается результатами анализа устойчивости колебательного контура с варикапом и реальным КОИ по критерию нормированной детерминантной функции (НДФ) [9]. Поскольку во всем диапазоне частот изменение фазы НДФ не превышает 360 градусов при любых значениях напряжения смещения варикапа (рисунок 4-в), рассматриваемая цепь является устойчивой.

5. Заключение

Включение последовательно с варикапом нефостеровской отрицательной ёмкости, реализованной в виде КОИ по схеме Линвилла, позволяет в несколько раз повысить управляемость варикапа. Использование варикапа с повышенной управляемостью в качестве переменной ёмкости в колебательном контуре, приводит к расширению диапазона перестройки резонансной частоты. Добротность такого контура может превышать добротность контура с обычным варикапом при наличии в нагрузке КОИ сопротивления, которое преобразуется в отрицательное и компенсирует вещественную часть входного сопротивления КОИ, а также сопротивление варикапа. Своеобразной «платой» за эти преимущества является увеличение коэффициента шума. Таким образом, имеет место компромисс между улучшением одних параметров и ухудшением другим. Тем не менее, повышение управляемости варикапов открывает новые возможности для создания частотно-перестраиваемых СВЧ-устройств.

Исследование выполнено за счёт гранта Российского научного фонда № 23-29-00991, https://rscf.ru/project/23-29-00991/.

Список литературы

- Kholodnyak D. The state of the art of electronically tunable compact bandpass filters design // 2017 IEEE MTT-S International Microwave and RF Conference (IMaRC). – IEEE, 2017. – P. 263-266.
- Kholodnyak D., Suematsu N. Design of small-size bandstop filters with lumped-element immittance inverters on artificial transmission lines // 2018 Asia-Pacific Microwave Conference (APMC). IEEE, 2018. C. 1076-1078.
- Buiantuev, B., Kalmykov, N., Kholodnyak, D., Brizić, A., Vincelj, L., Hrabar, S. Physically oriented design of negative capacitors based on Linvill's floating impedance converter // IEEE Transactions on Microwave Theory and Techniques. – 2022. – V. 70. – N. 1. – P. 139-154.
- 4. Nguyen D. A., Seo C. A novel varactorless tuning technique for Clapp VCO design using tunable negative capacitor to increase frequency-tuning range // IEEE Access. 2021. V. 9. P. 99562-99570.
- 5. Tiggelman M. P. J. et al. On the trade-off between quality factor and tuning ratio in tunable high-frequency capacitors // IEEE transactions on Electron Devices. 2009. V. 56. N. 9. P. 2128-2136.
- 6. Ченакин А. В., Горевой А. В. Практическое построение синтезаторов частот СВЧ-диапазона. М.: Горячая линия Телеком, 2022. 280 С.

- Kolev S., Delacressonniere B., Gautier J. L. Using a negative capacitance to increase the tuning range of a varactor diode in MMIC technology // IEEE Transactions on Microwave Theory and Techniques. – 2001. – V. 49. – N. 12. – P. 2425-2430.
- Linvill J. G. Transistor negative-impedance converters // Proceedings of the IRE. 1953. V. 41. N. 6. – P. 725-729.
- 9. Jimenez-Martin J. L. et al. Full conditions for the stability analysis of negative impedance converters // 6th European Conference on Antennas and Propagation (EUCAP). IEEE, 2012. P. 135-138.