## УДК 621.372.85

# Теоретические и экспериментальные исследования фотонных кристаллов, изготовленных технологией 3D-печати, в X-диапазоне

### И.В. Хайрушев, Е.А. Рябов, С.А. Сергеев

СГУ им. Н.Г. Чернышевского

Аннотация: В данной работе демонстрируются результаты изготовления фотонных кристаллов технологией 3D-печати для прямоугольного волновода X-диапазона и сравнение характеристик отражения с результатами численного моделирования в программном пакете OpenEMS. Положение пиков и полос пропускания в результатах моделирования и экспериментов хорошо согласуется, что говорит о перспективе технологии 3D-печати в изготовлении фотонных кристаллов.

Ключевые слова: фотонный кристалл, 3D-печать, прямоугольный волновод, CBЧ излучение, FDTD, OpenEMS

### Введение

Исследование электромагнитных свойств фотонных кристаллов и проектирование приборов на их основе представляют как фундаментальный интерес, так и открывают широкие прикладные возможности создания приборов для управления электромагнитным полем, включая новые типы электромагнитных сенсоров, малогабаритные антенны, линзы с субволновым разрешением, «невидимые» объекты в определенном диапазоне частот, согласованных нагрузок, различного типа фильтров и другие [1–2]. Добавление в периодическую структуру дефекта влияет на электромагнитные свойства фотонного кристалла, изменение формы дефекта дает возможность управления электромагнитными свойствами кристалла.

Развитие технологии 3D-печати дает новые конструктивные возможности, в частности, для создания фотонных кристаллов благодаря низкой стоимости, доступности и простоте печати. Ведутся исследования структур с использованием технологии 3D-печати, например, в создании метаматериалов и других структур в микроволновом диапазоне [3–5] со встроенной геометрической оптикой (MEGO) [6].

В работе приведены результаты экспериментального и теоретического исследования фотонных кристаллов, изготовленных технологией 3D-печати, для прямоугольного волновода WR-90 в X-диапазоне.

1. Описание конструкции

3D-печать является аддитивной технологией, основанной на поэтапном наращивании слоев материала, существуют различные способы изготовления конструкций объектов. В данной работе применяется технология физического моделирования методом послойного наплавления (англ. – fused deposition modeling, FDM), при которой проводится плавление нити пластика и последующее нанесение каждого очередного слоя. Для 3D-принтеров производятся нити диаметрами 1,75 мм или 2,85 мм, изготовленные, например, из пластиков типа PLA (полимолочная кислота) или ABS (акрилонитрилбутадиенстирол) и намотанные на катушки. Они представлены на рынке в разных цветах, что обеспечивает дополнительное удобство восприятия изготавливаемых объектов. В данной работе при изготовлении конструкций фотонных кристаллов на 3D-принтере с кинематикой CoreXY и диаметром сопла 0,4 мм использовались нити на основе пластика PETG (полиэтилентерефталат-гликоль) диаметром 1,75 MM И относительной диэлектрической проницаемостью  $\varepsilon' \approx 2,5$  в X-диапазоне [7].

Фотонные кристаллы были предварительно спроектированы в программном пакете OpenSCAD и в дальнейшем импортированы для численного анализа в OpenEMS и для изготовления на 3D-принтере. Фотонные кристаллы, имеющие форму прямоугольных параллелепипедов, проектировались для прямоугольного волновода WR-90 сечением 22,86×10,16 мм<sup>2</sup> в Х-диапазоне, в которых вдоль оси волновода периодически расположены два поперечных воздушных отверстия прямоугольной формы сечения и дополнительно в центре структуры расположен дефект, представляющий собой отверстие различной формы (ромб, круг и квадрат). На рисунке 1 представлены двухмерная форма фотонных кристаллов их обозначения. Отличительной особенностью спроектированных, изготовленных и исследованных в данной работе фотонных кристаллов является форма дефекта (таблица 1).



Рисунок 1. Фотонные кристаллы с двумя отверстиями.

Таблица 1. Характерные особенности и наиболее важные размеры элементов фотонного кристалла

| Форма<br>отверстий | Размер<br>отверстия<br>вдоль<br>волновода<br>(w), мм | Размер<br>отверстия<br>вдоль<br>широкой<br>стенки<br>волновода<br>(g), мм | Период<br>следования<br>отверстий<br>(Т), мм | Количество<br>отверстий<br>(i) | Длина<br>(L), мм | Форма<br>отверстия<br>в середине<br>структуры | Размеј<br>отверстия<br>мм | р<br>1 (d), |
|--------------------|------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------|--------------------------------|------------------|-----------------------------------------------|---------------------------|-------------|
| прямоугольная      | 9                                                    | 18                                                                        | 31                                           | 2                              | 84               | без                                           | ×                         | 20          |
|                    |                                                      |                                                                           |                                              |                                |                  | ромб                                          | диагональ                 |             |
|                    |                                                      |                                                                           |                                              |                                |                  | круг                                          | диаметр                   |             |
|                    |                                                      |                                                                           |                                              |                                |                  | квадрат                                       | сторона                   |             |

### 2. Подготовка OpenEMS

Перед изготовлением спроектированных фотонных кристаллов было проведено численное моделирование их характеристик с использованием программного пакета OpenEMS [8]. В этом программном пакете при численном решении электродинамических задач используется метод FDTD – метод конечных разностей во временной области, а для взаимодействия с OpenEMS используется скриптовый язык Matlab/Octave. Для проведения численного моделирования в диапазоне частот от 8 до 12 ГГц в центр прямоугольного волновода WR-90 сечением 22,86×10,16 мм<sup>2</sup>

помещался фотонный кристалл, имеющий форму прямоугольного параллелепипеда, с диэлектрической проницаемостью  $\varepsilon = 2,5$ .

### 3. Экспериментальные результаты и моделирования

В ходе моделирования изменялся шаг сетки от 1,0 мм до 0,2 мм. Слева на рисунке 2 представлены зависимости коэффициента отражения различных фотонных кристаллов при различных шагах сетки. Из-за неточности определения геометрии фотонного кристалла появляются смещения минимумов и меняется ширина полосы пропускания.

Экспериментальные исследования характеристик отражения изготовленных фотонных кристаллов проводились с использованием установки, состоящей из панорамного измерителя КСВН и ослабления P2-61, подключенного через плату Arduino Mega [9-14]. Справа на рисунке 2 представлены зависимости коэффициента отражения фотонных кристаллов с дефектами разной формы, полученных экспериментальным путем и в результате численного моделирования при шаге сетки h = 0,2 мм. Видно, что результаты моделирования и экспериментальные данные показали очень хорошее совпадение положения пиков и полос пропускания во всех исследованных вариантах конструкций, что указывает на хороший контроль топологии и размеров в использованном варианте технологии FDM 3D-печати.



**Рисунок 2.** Частотные зависимости коэффициента отражения фотонных кристаллов без дефекта и с дефектами: круг, ромб, квадрат. Слева: результаты моделирования из OpenEMS при различных шагах сетки. Справа: зависимости, полученные экспериментальным путем и в результате численного моделирования при шаге сетки h = 0,2 мм.

### Заключение

Таким образом, изготовление фотонных кристаллов с использованием 3D-печати проектирования сложных форм. В данной работе дает возможность продемонстрирована возможность эффективного использования технологии 3Dпечати при создании фотонных кристаллов для управления характеристиками электромагнитного излучения Х-диапазона в прямоугольном волноводе сечением 22,86×10,16 мм<sup>2</sup>. Было проведено моделирование в OpenEMS характеристик отражений фотонных кристаллов с диэлектрической проницаемостью є = 2,5, соответствующей пластику РЕТС. При изменении шага сетки h от 0,2 до 1,0 мм наблюдается смещение минимумов коэффициентов отражения. Для бездефектного фотонного кристалла данное смещение минимумов сильно влияет на форму полосы пропускания.

Точность контроля размеров спроектированных и изготовленных фотонных кристаллов, обеспечиваемая выбранным для анализа вариантом технологии 3D-печати с использованием общедоступного и дешевого оборудования, дает основания рассчитывать на перспективы создания эффективных и дешевых прототипов устройств для управления электромагнитным излучением в X-диапазоне.

Исследование выполнено при финансовой поддержке РФФИ (проект № 20-07-00603 A).

#### Список литературы

- 1. Нелин Е. А. Устройства на основе фотонных кристаллов // Технология и конструирование в электронной аппаратуре. 2004. № 3. С. 18-25.
- Fan S. et al. High extraction efficiency of spontaneous emission from slabs of photonic crystals // Physical review letters. - 1997. - V. 78. - № 17. - P. 3294.
- 3. Garcia C. R. et al. 3D printing of anisotropic metamaterials // Progress In Electromagnetics Research Letters. 2012. V. 34. P. 75-82.
- 4. Михайлов А. И. и др. Применение технологии 3D-печати для создания искусственных электродинамических структур //III научный форум телекоммуникации: Теория и технологии TTT-2019. C. 222-224.
- 5. Рябов Е. А. и др. Использование технологии 3D-печати для создания искусственных электродинамических структур // НННФ. 2020. С. 223-224.
- 6. Sadeqi A. et al. Three dimensional printing of metamaterial embedded geometrical optics (MEGO) // Microsystems & nanoengineering. 2019. V. 5. № 1. P. 1-10.
- Zechmeister J., Lacik J. Complex Relative Permittivity Measurement of Selected 3D-Printed Materials up to 10 GHz // 2019 Conference on Microwave Techniques (COMITE). – 2019. – P. 1-4.
- Liebig T. et al. openEMS–A free and open source equivalent-circuit (EC) FDTD simulation platform supporting cylindrical coordinates suitable for the analysis of traveling wave MRI applications // Intern. J. of Numer. Model.: Electronic Networks, Devices and Fields. – 2013. – V. 26. – № 6. – P. 680-696.
- 9. Сергеев С. А. и др. Автоматизированная установка для измерения спектров КСВН и пропускания жидких диэлектриков // Электроника и микроэлектроника СВЧ. 2019. Т. 1. № 1. С. 439-444.
- Рябов Е. А. и др. Установка для измерения спектров КСВН и пропускания жидких диэлектриков // НННФ. – Саратов: Техно-Декор, 2019. – С. 214.
- Рябов Е. А. и др. Автоматизированная установка для измерения спектров КСВН и пропускания коллоидов микро- и наночастиц // Взаимодействие сверхвысокочастотного, терагерцового и оптического излучения с полупроводниковыми микро- и наноструктурами, метаматериалами и биообъектами. – Саратов: Сарат. источник, 2019. – С. 188-191
- 12. Рябов Е. А. и др. Модифицированная установка для измерения спектров КСВН и пропускания жидких диэлектриков // Электроника и микроэлектроника СВЧ. 2021. Т. 1. № 1. С. 586-589.
- Сергеев С. А. и др. Автоматизированная установка для измерения спектров КСВН и пропускания жидких диэлектриков // Электроника и микроэлектроника СВЧ. – 2019. – Т. 1. – С. 439-444.
- Михайлов А. И. и др. Физические основы твердотельной электроники: Учеб. пособие. Саратов: Изд-во Саратовского университета, 2007. – 164 с.