УДК 621.396.67

Влияние формы антенного полотна АФАР на характеристики электронного сканирования

С.С. Сидоренко, А.Д. Кучмий, И.А. Богачев, В.В. Демшевский, И.А. Сикорская

АО НПП «Исток «им. Шокина»

Аннотация: В представленной работе проводится сравнительный анализ влияния формы антенного полотна и взаимного расположения излучателей на характеристики электронного сканирования в плоскостях Е и Н.

Ключевые слова: электронное сканирование, антенная решетка, форма антенного полотна, взаимное расположение излучателей.

1. Введение

На сегодняшний день одной из основных тенденций в современных системах радиолокации является стремительный рост применения систем с электронным сканированием, в частности активных фазированных антенных решеток (АФАР). В современном мире АФАР играют большую роль в системах связи, частным случаем которых является стандарт 5G.

Исследований по тематике развития и применения AФAP достаточно много, но строгие электродинамические расчеты с учетом дифракционных и интерференционных свойств, в технической литературе встречаются не так часто.

Цель представленной работы – исследовать влияние различных форм антенных решеток (AP) на их характеристики электронного сканирования, исследовать влияние взаимного расположения излучателей на характеристики электронного сканирования AP и провести сравнение полученных результатов.

2. Аналитический расчет АР различной формы

В работе были рассмотрены AP различных форм с разным взаимным расположением излучателей, рассчитанные с помощью высокоуровневого языка программирования MATLAB. Расчет AP проводился при следующих общих параметрах: диаметр антенного полотна D = 200 мм, шаг расположения излучателей по осям X и Y $0.52\lambda_0 \ge 0.52\lambda_0$, соответственно, диапазон рабочих частот – X, сектор электронного сканирования $\theta_a = \pm 60^\circ$.

По типу форм AP можно поделить на: гексагональные, круглые и квадратные. По типу взаимного расположения излучателей внутри антенной решетки, можно провести следующее деление: прямоугольное; гексагональное и фракталоподобное. Эскизы с различными комбинациями форм и типов взаимного расположения элементов приведены на рисунке 1.

Применяя аналитическое выражение (1) были рассчитаны диаграммы направленности (ДН) для каждой из выше упомянутых решеток, а результаты расчетов сведены в таблицу 1 [1].

$$F(\varphi_a, \theta_a) = \sum_i \sum_j A_{ij} \exp\{j(k(x_{ij} * \sin(\varphi_0) + y_{ij} * \cos(\varphi_0) \sin(\theta_0)) + \varphi_{\mathtt{MJ}_{ij}})\}; (1)$$

где φ_a , θ_a — углы, задающие направления главного луча; A — значение амплитуды одиночного излучателя; k — волновое число; $\varphi_{_{изл}ij}$ — фаза излучателя.

Рисунок 1. Эскизы различных форм AP с различным расположением излучателей. а) гексагональная AP с фракталоподобный расположением элементов; б) гексагональная AP с прямоугольным расположением элементов (1); в) гексагональная AP с прямоугольным расположением элементов; д) гексагональная AP с гексагональная AP с гексагональная AP с гексагональная AP с гексагональным расположением элементов; ж) прямоугольная AP с прямоугольным расположением элементов; ж) прямоугольным расположением элементов; з) прямоугольная AP с гексагональным расположением элементов; к) прямоугольная AP с прямоугольным расположением элементов; к) прямоугольная AP с прямоугольная АP с прямоугольная AP с прямоугольная AP с прямоугольная АP с прямоуг

		гаолица		лае тетов разли швіх видов и
Тип решетки	Сектор возможного сканирования, град			УБЛ при <i>θ</i> , <i>φ</i> = 0°, дБ
	E	Н	D	
а	± 60	± 40	± 60	-16
б	± 30	± 40	± 50	-17
В	± 40	± 40	± 50	-16.5
Γ	± 40	± 40	± 50	-18
Д	± 60	± 40	± 60	-17
e	± 60	± 40	± 60	-18
Ж	± 40	± 40	± 50	-13
3	± 60	±40	± 60	-14

Таблица 1 – Результаты расчетов различных видов АР

В таблице 1, приведены результаты, показывающие предельные углы отклонения ДН в антенных решетках с электронным сканированием в плоскостях E, H и D. После проведения расчетов, в таблицы 1 можно выделить 3 AP, которые имеют сектор сканирования в указанных плоскостях 60 градусов, без существенного искажения ДН: а) гексагональная AP с фракталоподобный расположением элементов (далее – «А»); д) гексагональная AP с гексагональным расположением элементов (далее – «Д»); е) круглая AP с гексагональным расположением элементов (далее – «Е»).

Реализованные нами алгоритмы в МАТLAB, за относительно небольшой промежуток времени, позволили выявить из рассмотренного перечня, антенные решетки, отвечающие заданным требованиям. Но, стоит отметить, в МАТLAB были реализованы алгоритмы расчета ДН АР без учета дифракционных эффектов на краях антенной решетки и дополнительных паразитных переотражений. Поэтому для получения более точных результатов, было проведено электродинамическое моделирование методом конечных элементов и разработаны строгие электродинамические модели выбранных АР – «А», «Д» и «Е».

3. Электродинамический расчет трех наилучших структур АР

В качестве одиночного элемента, представляющего основу для AP, был взят антенный излучатель типа патч. Излучатель представляет собой многослойную печатную плату с тремя слоями металлизации. Средний слой металлизации имеет вырез в виде щели, а на нижнем слое диэлектрической подложки располагается линия передачи типа SIW. Продольные размеры антенны составляют $0,52\lambda_0 \ge 0,52\lambda_0$, а высота профиля 2,2 мм. Внешний вид излучателя показан на рисунке 2(a) [2] – [5].

Модуль коэффициента отражения от входа излучателя представлен на рисунке 2(б), его КУ в полосе рабочих частот изменяется от 6,7 до 7,5 дБ. Ширина рабочей полосы одиночного излучателя составляет 6,7%.

Рисунок 2. Патч излучатель в разобранном виде а); график частотной зависимости модуля коэффициента отражения от входа излучателя б)

В процессе моделирования бесконечной антенной решетки были рассчитаны графики частотных зависимостей модуля коэффициента отражения от входа излучателя в секторе сканирования $\theta_a = \pm 60^\circ$ (рисунок 3).

Рисунок 3. Графики частотных зависимостей модуля коэффициента отражения от входа излучателя, находящегося в составе модели бесконечной антенной решетки, в секторе сканирования $\theta_a = \pm 60^\circ$ в *E*-, *H*- плоскостях.

На основе представленного патч-излучателя с линией возбуждения в виде SIWструктуры был проведен электродинамический анализ AP - «А», «Д» и «Е». Внешний вид разработанных AP представлен на рисунке 4. Нормированные ДН в E -, H плоскостях приведены на рисунке 5.

Рисунок 4. Внешний вид АР: а) гексагональной АР с фракталоподобный расположением элементов «А»; б) гексагональная АР с гексагональным расположением элементов «Д»; в) круглая АР с гексагональным расположением элементов «Е»

279

Рисунок 5. Нормированные ДН АР «А», «Д», «Е» в *E*-, *H*- плоскостях. Сплошной черной линией показаны результаты расчета с помощью электродинамического моделирования; красным пунктиром показаны результаты расчета с помощью MATLAB

Общие параметры АР «А», «Д» и «Е», которые были рассчитаны в ходе выполнения работы, представлены в таблице 2.

		Таблица 2 – Параметры АР «А», «Д», «Е»		
		«A»	«Д»	«Е»
Сектор возможного	Е		± 60	
сканирования в	Н		± 40	
плоскостях, град	D		± 60	
Диапазон перестройки раб		Х		
Ширина рабочей поло		6,68		
УБЛ в Е-плоскости при в	-16.7	-16.7	-18.5	
УБЛ в Н-плоскости при $\theta = 0^\circ$, дБ		-21.9	-19.1	-19.3
$2 \Theta_{-3 \mathrm{д} \mathrm{b}}$ в Е-плоскости, град		8.6	8.9	8.8
$2\Theta_{-3dE}$ в Н-плоскости, град		8.7	7.8	9
Коэффициент усиления, дБ		25.9	27	26.3
Количество излучателей, шт		95	127	111
Диаметр металлического основания, мм			200	
Шаг расположения излучателе		$0,52\lambda_0 \ge 0,52\lambda_0$		

Вывод

В ходе выполнения работы было выявлено, что AP с гексагональной и круглой формами антенного полотна являются наиболее перспективными вариантами для использования в AФAP. Для обеспечения наибольшего отклонения луча ДН, наиболее перспективными вариантами расположения элементов на антенном полотне являются гексагональное и фракталоподобное. Последний тип расположения элементов позволяет использовать полотно для реализации дополнительного канала.

Список литературы

- 1. Антенны и СВЧ-устройства // Д.И. Воскресенский, В.П. Гостюхин и др. Учебник для ВУЗов, изд. «Радиотехника», Москва 2006
- Влияние способа возбуждения на характеристики микрополосковой патч-антенны Х-диапазона // В.В. Демшевский, И.А. Богачёв. – Всероссийская конференция «Электроника и микроэлектроника СВЧ» - Санкт-Петербург 2019, с. 146-150.
- Modern antenna design // THOMAS A. MILLIGAN Published by John Wiley & Sons, Inc., Hoboken, New Jersey. Published simultaneously in Canada, 2005.
- 4. Design of a Novel UWB Microstrip Antenna with SIW Feed / Abbas Ebrahimi, Hamid Khodabakshi. 2018;
- 5. Multibeam SIW Slotted Waveguide Antenna System Feed by a Compact Dual-Layer Rothman Lens / K. Tekkouk and others. 2016. 504-516;