УДК 53.043

Особенности долговременной эксплуатации углеродных автокатодов в нестационарных температурно-вакуумных условиях

Р.К. Яфаров^{1,2}, А.В. Сторублев^{2,3}

¹Саратовский филиал Института радиотехники и электроники им. В. А. Котельникова РАН ²Саратовский национальный исследовательский государственный университет

им. Н.Г. Чернышевского

³AO «НПП «Алмаз»

Аннотация: рассмотрены перспективы использования термо- и полевых катодов для увеличения надежности и срока службы ЭВП СВЧ и субтерагерцового диапазонов. Показано, что в отличие от эмиссии термокатодов, где со временем наработки происходит необратимое снижение эмиссионных свойств, полевая эмиссия автокатодов в процессе эксплуатации может быть восстановлена.

Ключевые слова: алмазографитовый нанокомпозит, сильноточная автоэмиссия, переосаждение, надежность, срок службы

1. Введение

Электровакуумные приборы СВЧ и субтерагерцового диапазонов имеют широкое применение, как в наземных, так и в воздушно - космических радиотехнических устройствах. Наряду с традиционным повышением рабочей частоты, мощности и обеспечением мгновенного времени готовности систем навигации и космической связи, ставятся задачи по увеличению их надежности и срока службы в десятки и сотни тысяч часов [1]. Как показывает практика, надежность и долговечность, а также характеристик электрических ЭВП В значительной стабильность степени определяются эмиссионной надежностью и долговечностью катодов. В настоящее время, в большом количестве выпускаемых промышленностью ЭВП, в том числе СВЧ диапазона длин волн, нашли применение термоэмиссионные металлопористые катоды (МПК). Одним из основных требований, предъявляемых к МПК, является повышение плотности отбираемого тока, которое зачастую достигается увеличением его рабочей температуры. Повышение рабочей температуры влечет за собой повышенный расход активного вещества, запас которого во многом и ограничивает долговечность работы термокатодов и изделий вцелом.

Для обеспечения требуемых эмиссионных токов, конструкция и технологии изготовления МПК непрерывно совершенствуются. Используются различные добавки в составе активного вещества, снижающие их интегральную работу выхода и скорость испарения [2, 3]. Другим фактором, существенно ограничивающим стабильность работы ЭВП и его срок службы, является напыление активного вещества на управляющую сетку. Вследствие этого, а также радиационного нагрева и нагрева за счёт токоперехвата, сетка сама становится эмитирующим элементом. Это снижает качество запирания электронного потока в промежутках между импульсами вплоть до полной потери управления. Появление эмиссии с управляющей сетки в пушечных узлах с теневой сеткой, работающей под потенциалом катода, приводит к взаимному разогреву эмиссионным током сеточных структур в зависимости от направления электрического поля между ними. При определённых условиях работы процесс эмиссии между сетками может развиваться вплоть до физического разрушения одной из сеток. Если появление термоэмиссии с сетки является, хотя бы частично, устранимым процессом, то трещинообразование или расплавление сеточных структур приводит к окончательному выходу из строя целого изделия.

В настоящее время в производстве ЭВП СВЧ и субтерагерцового диапазонов рассматривается возможность использования, кроме МПК, источников электронов, функционирование которых основано на явлении полевой эмиссии электронов и обладающих, в отличие от термокатодов, сверхвысоким быстродействием [4]. Одним из наиболее перспективных материалов для создания подобного типа устройств являются наноуглеродные пленочные структуры. Ранее [5] показано, что выбором режимов конденсации алмазографитовых нанокомпозитов в неравновесной микроволновой плазме паров этанола низкого давления может быть получено увеличение плотности автоэмиссионного тока в импульсах микросекундной длительности свыше 100 А/см².

Целью работы являлось исследование возможности создания на основе композитных наноуглеродных пленочных покрытий полевых источников электронов с высокой плотностью автоэмиссионнго тока и долговременным ресурсом эксплуатации в условиях значительного разогрева токоприемного электрода при работе в режиме подачи стационарного напряжения.

2. Подготовка образцов и экспериментальные результаты

В качестве автоэмиссионного катода использовались алмазографитовые плёнки толщиной около 100 нм, осажденные на поликоровые пластины в микроволновой плазме паров этанола по методике, изложенной в [5]. Осаждение алмазографита осуществлялось на полированную сторону подложки. Эмитирующей частью катодов были торцы алмазогафитовой плёнки, на расстоянии 7 мм от которых напылялся металлический контакт, к которому прикладывался катодный потенциал (рис. 1).

Рисунок 1. Схематичное изображение образца наноалмазографитового автокатода

Катод закреплялся в экспериментальный макет, вид которого показан на рис. 2. Геометрические размеры деталей макета обеспечивали перпендикулярное расположение образца, а также равномерную удалённость точек торца образца относительно анода. Жесткое механическое закрепление катода в держателе осуществлялось с помощью винтов, которые упирались в металлический контакт поликоровой пластины. При работе использовался источник питания постоянного тока. Анод представлял собой квадрат со стороной 5,5 мм. Расстояние катод-анод составляло 40 мкм.

Рисунок 2. Вид экспериментального макета для проведения испытаний катодов с торцевой автоэмиссией

В начале проведения испытаний алмазографитового автокатода проведено обезгаживание макета. В процессе обезгаживания анода с катода отбирался ток до 12

мА. Плотность автоэмиссионного тока при этом составляла около $2,1\cdot10^3$ A/см². Однако такая величина тока сохранялась непродолжительное время, затем в процессе обезгаживания ток медленно снижался и стабилизировался на уровне около 7 мА. При обезгаживании анода токоотбором с катода достигалась температура, при которой наблюдалось свечение материала анода, заметное невооруженным взглядом (рис. 3).

Рисунок 3. Свечение анода в результате нагрева автоэмиссионным током с катода в течение 30 мин мощностью 15,3 Вт (1,8 кВ, 8,5 мА)

Помимо свечения анода на рис. З показано свечение, вызванное пролетом электронов в зазоре между катодом и анодом. В процессе проведения эксперимента установлено, что интенсивность свечения возрастала с увеличением напряженности поля между катодом и анодом и тока автоэмиссии.

При проведении обезгаживания анода давление в вакуумной камере повышалось с $1,3 \cdot 10^{-5}$ Па до $8,0 \cdot 10^{-5}$ Па, после чего происходило понижение давления. Т.к. объём рабочий камеры, в которой проводились испытания, составлял ~0,0123 м³, локальное снижение вакуума в области электродов было более значимым, чем зафиксировал манометрический датчик.

Для выяснения причин снижения полевого тока при прямом включении диодной структуры в процессе сильноточного обезгаживания анода, а также из-за показанного в более ранних работах [6] появления слоя углерода на аноде, как следствия работы автоэмиссионного катода на основе алмазографита, исследовано влияние обратного включения диодной структуры на эмиссионную способность катода.

При приложении между анодом и катодом напряжения обратной полярности наблюдался рост автоэмиссионного тока с анода, который также как с катода достигал значений единиц мА. Однако ток с анода не являлся стабильным. На рис. 5 показано типичное изменение автоэмиссии с анода в зависимости от приложенного электрического поля между катодом и анодом. При высоких значениях токов и напряжений также наблюдалось заметное свечение в зазоре анод-катод. По виду свечение напоминало картину, показанную на рис. 4б. При проведении процесса фиксировались микропробои, сопровождающиеся световыми вспышками в межэлектродном зазоре, фиксировались случаи пробоев с отключением источника питания с защитой по току. Последствиями микропробоев становилось снижение автоэмиссионного тока.

Рисунок 5. ВАХ процесса с отбором полевого тока с анода

На рис. 6 приведены типичные изменения ВАХ катода до и после проведения процесса восстановления его эмиссионной способности в результате полевой эмиссии

с анода. Можно видеть, что после обратного включения диодной структуры полевой ток с катода при напряженности поля 45 В/мкм усиливается более, чем в 5 раз. При проведении обезгаживания описанный способ восстановления эмиссионной способности автокатода применялся несколько раз. Во всех случаях отмечался значимый эффект улучшения эмиссионных свойств катода.

Рисунок 6. Восстановление эмиссионной способности катода после обратного включения диодной структуры

После завершающего обезгаживания анода в течение 60 мин, как показано на рис. 3, при попытке отбора тока с анода фиксировались значительно более низкие токи, а эффект восстановления эмиссионной способности катода был менее ярко выражен по сравнению с процессами, проведёнными до значительного разогрева анода.

На рис. 7 приведена в линейных и координатах Фаулера-Нордгейма ВАХ полевого катода после обезгаживания с периодическим восстановлением его эмиссионной способности. Линейный характер изменения ВАХ в координатах Фаулера и Нордгейма свидетельствует о сохранении полевого характера эмиссионной способности катода.

Рисунок 7. ВАХ катода после проведения процесса обезгаживания анода

Рисунок 9. Вид областей распыления катода: а) глубины распыленной области; б) длины распыленной области

После исследования эмиссионной способности образца, проводился анализ

изменения внешнего вида поверхности эмиттера. Установлено, что в результате проведения испытаний с сильноточным токотбором, участки эмиттера, расположенные на торцевой, а также на краю плоской части подложки в результате распыления алмазографита видоизменились. Форма распылённого участка приобрела вид прямоугольной области по форме анода. Размеры сформировавшейся области плоской части подложки были измерены на измерительном микроскопе Hawk. На рис. 9 представлены результаты измерения распылённой области образца. Глубина распыленной области составила 0,42 мм, протяженность области вдоль торца – порядка 6,5 мм.

3. Заключение

Установленный факт распыления материала автокатода при аномально высокой плотности полевого тока позволяет объяснить полученные результаты экспериментов по восстановлению эмиссионной его способности при включении обратной полярности напряжения в межэлектродном зазоре источника электронов. При обратной полярности поля высокой напряженности осажденный на аноде распыленный материал может быть возвращен на автокатод. Очевидно, что возможность перераспределять эмиссионный материал с анода на катод ограничена его наличием на поверхности анода. В процессе обезгаживания, в связи с интенсивным нагревом анода под воздействием тока электронов высокой плотности, скорость осаждения и его количество уменьшаются. В результате этого восстановительная способность обратного включения автокатода снижается.

Таким образом, экспериментально установлена возможность проведения обезгаживания околокатодных электродов отбором тока с автоэмиссионного катода с сохранением эмиссионной способности эмиттера на высоком уровне. Обнаружен эффект, позволяющий значительно повышать эмиссионную способность катода. Установленные эффекты переосаждения материала автоэмиттера и восстановления его эмиссионной способности, в отличие от процессов, происходящих при эксплуатации МПК, могут оказывать значимое положительное влияние на длительность эксплуатации. Эффект переосаждения является перспективными способом получения сильноточной полевой эмиссии катодов с неограниченным сроком службы в нестабильных температурно-вакуумных условиях эксплуатации.

Работа выполнена при финансовой поддержке Российского научного фонда (проект № 16-19-10033) и Российского фонда фундаментальных исследований (проект № 19-38-90216).

Список литературы

- Booske J. H., Whaley D. R., Menninger W. L., Hollister R. S., and Armstrong C. M. Traveling-wave tubes in Modern Microwave and Millimeter-Wave Power Electronics / R. J. Barker et al. // Ed. New York: Wiley-Interscience, 2005, ch. 4, pp. 171–245.
- 2. Крачковская Т.М., Сахаджи Г.В., Сторублев А.В., Пономарев А.Н. Металлопористый катод и способ его изготовления. Патент №2658646. Заявл. 27.06.2017 г. Опубл. 22.06.2018
- Журнал технической физики, 2017, том 87, вып. 1 13 Физический механизм работы скандатных катодов СВЧ приборов © В.И. Капустин, И.П. Ли, А.В. Шуманов, Ю.Ю. Лебединский,1 А.В. Заблоцкий 1 с. 106-116
- 4. Mittal G., Lahiri I. Recent progress in nanostructured next-generation field emission devices // J. Phys. D: Appl. Phys. 2014. Vol. 47. P. 323001. DOI: 10.1088/0022-3727/47/32/323001
- 5. Яфаров Р.К., Шаныгин В.Я., Нефедов Д.В. Алмазографитовый нанокомпозит для сильноточной полевой эмиссии электронов // Докл. VI Всерос. микроволновой конф. М. 2018. С. 142.
- 6. Яфаров Р. К., Нефедов Д. В., Сторублев А. В. Вакуумно-плазменные процессы при экстремальной полевой эмиссии в алмазографитовых источниках электронов // Известия Саратовского университета. Новая серия. Серия: Физика. 2021. Т. 21, вып. 1. С. 69–79.