Управление параметрами паразитных мод колебаний в двухзазорном резонаторе двуствольного многолучевого клистрона Х-диапазона

В.А. Царев, А.В. Ливчина

Саратовский государственный технический университет им. Гагарина Ю.А.

Аннотация: Настоящая работа представляет собой результаты трехмерного электромагнитного моделирования гибридных конструкций двухзазорных резонаторов двуствольного многолучевого клистрона Х-диапазона. Они содержат решетки из металлических стержней, введенных в корпус этих резонаторов для управления электродинамическими параметрами паразитных высших мод. Определены условия, при которых достигается высокая стабильность режима усиления клистрона при взаимодействии поля резонатора с многолучевыми потоками одновременно на противофазном и синфазном видах колебаний разных мод.

Ключевые слова: двухзазорный фотонно-кристаллический резонатор, многолучевой клистрон, синфазный вид колебания, противофазный вид колебания, паразитные моды

1. Введение

Одним из направлений увеличения уровня выходной мощности многолучевых клистронов [1 - 3], работающих в коротковолновой части СВЧ диапазона, является переход от однопотоковых многолучевых клистронов (МЛК) к многоствольным клистронам (МСК) [4]. Число пролетных труб в резонаторах МСК определяется как числом ВЧ зазоров, расположенных в продольные относительны движения электронов направлении, так и числом пролетных труб в поперечном направлении, равным числу стволов. Наиболее часто в Х-диапазоне используются МСК с призматическими однозазорными резонаторами, работающими на высших видах колебаний [5]. Однако, при большом числе лучей (N>19), характеристическое сопротивление этих резонансных систем невелико. Поэтому расширение полосы частот как МЛК, так и МСК может быть достигнуто путем применения двухзазорных резонаторов, работающих на основной или на первой высшей квази-ТЕМ модах (m=0,1) и имеющих противофазные напряжения на зазорах ($\Psi_m = \pi$) [6].

Однако при практической реализации таких конструкций разработчики МСК обычно наталкиваются на значительные трудности, связанные с проблемой самовозбуждения приборов на паразитных модах (m>1, $\Psi_m = 2\pi$). При этом управление электродинамическими параметрами высших мод только лишь за счет изменения размеров корпуса резонатора становится крайне неэффективным.

В связи с этим представляет интерес исследование гибридных конструкций двухзазорных резонаторов МСК, содержащих, по аналогии с фотоннокристаллическими резонансными системами [7 – 8], дополнительную решетку из металлических стержней. В таких резонансных системах резонансная частота моды f_{0m} , собственная добротность Q_{0m} и характеристическое сопротивление ρ_m будут определяться выбором материала, формы и размеров каждого стержня, а также расстоянием между стержнями.

Цель настоящей работы – поиск оптимального расположения стержней для управления электродинамическими параметрами высших мод, при которых достигается высокая стабильность режима и реализуются наилучшие условия для взаимодействия поля с многолучевыми потоками на π - и 2π видах колебаний.

2. Конструкция резонансной системы

Резонансная система (модель к=1), изображенная на рисунке 1, состоит из двух стволов, каждый из которых включает в себя два полуволновых отрезка симметричной полосковой линии, нагруженных каждый на емкость двойного бессеточного зазора. Отрезки полосковых линий в разных стволах ориентированы друг относительно друга под углом в 60 градусов. Они соединены с прямоугольным корпусом резонатора через промежуточную металлическую рамку. Рамка снабжена отверстиями для пропускания основных металлических стержней, обеспечивающих замыкание резонансных элементов на корпус резонатора. В верхней и нижней крышках резонатора имеются также отверстия для пропускания через них дополнительных металлических стержней, позволяющих управлять частотой и спектром паразитных мод колебаний.

Рисунок 1. Трехмерная модель резонатора. (а) - вид сверху, (б) - вид в поперечном сечении: 1 - верхняя крышка, 2 - нижняя крышка, центральный электрод полосковой линии, накладки на пролетные трубы

Основные геометрические размеры резонатора приведены в таблице 1.

Размеры,	d	l	h	а	δ	Δ	S	S_1	W	L	Ν
MM	1	1,8	4	0,5	1	2,4	6,5	9,5	16,45	28,4	38

Таблица 1. Характерные геометрические размеры резонансной системы

2. Условия самовозбуждения и результаты моделирования

Известно [6], что в двухзазорном резонаторе при определенной величине угла пролета между центрами зазоров

$$\theta_s = \omega_m (l+d) / v_0 = \frac{\pi}{2} p \pi, \tag{1}$$

где $\omega_m = 2\pi f_{0m}$ – круговая частота моды, v_0 - скорость электронов на входе в резонатор, *l*- длина центральной пролетной трубы (втулки), *d* – длина зазора, p = 2n (для моды резонатора с противофазным видом колебаний) и p = 2n + 1 (для моды резонатора с синфазным видом колебаний); n = 0, 1, 2, ... могут создаться условия для возникновения отрицательных значений активной составляющей шунтирующей проводимости электронного потока G_e (далее в тексте – «Электронная

проводимость»).

Для возникновения автоколебаний необходимо, также выполнение амплитудного условия

$$|G_e| > \frac{1}{R},\tag{2}$$

где $R = Q_0 \rho$ – эквивалентное активное сопротивление резонатора на резонансе.

Для электродинамического моделирования двухзазорных резонаторов и расчета их электронных параметров на разных модах (коэффициент связи $M_{\rm m}$ и относительная электронная проводимость $G_{\rm em}/G_0$) была использована программа «REZON» [9]. Расчет моделей проводился в малосигнальном приближении [10] для ускоряющего напряжения U₀=5,4 кВ при токе одного луча I₀=0,077A и коэффициенте заполнения b/a=0,6. При этом усреднение величин параметров двух стволов $M_{\rm m}$, $G_{\rm em}/G_0$ и $\rho_{\rm m}$ проводилось, как по сечению электронного потока, так и по разным пролетным каналам. Результаты расчета для оптимальной конструкции резонатора, для которой отсутствует самовозбуждение на всех модах колебаний, представлены на рисунке 2.

Рисунок 2. Зависимости коэффициента связи M (а) и относительной электронной проводимости $\frac{G_e}{G_0}$ (б) при синфазном возбуждении и противофазном видах колебаний от рабочей частоты сигнала f_0 для модели №3

В таблицах 2 – 4 представлены результаты 3D электромагнитного моделирования для трех конструкций двухзазорных резонаторов двуствольного клистрона, отличающихся разным количеством стержней и их месторасположением.

	Параметры:						
Номер моды, т	<i>Ψ</i> _m , рад	$f_{ m 0m},$ GHz	$Q_{ m 0m}$	$ ho_{\mathrm{m}}, \Omega$	$M_{ m m}$	G _{em} /G _o	
1	π	8,97	1633	39,6	0,825	0,267	
2	π	9,7	1819	38,4	0,764	0,35	
3	2π	12,2	2351	30,9	0,588	-0,237	

Таблица 2. Результаты электродинамического моделирование конструкции k=1

4 2π 15 2942 $26,2$ $0,04$ $0,110$
--

Таблица 3. Результаты электродинамического моделирование конструкции k=2

	Параметры:						
Номер моды, т	Ψ _m , рад	$f_{ m 0m}$, GHz	$Q_{0\mathrm{m}}$	$ ho_{ m m}, \Omega$	M _m	$G_{ m em}/G_{ m o}$	
1	π	8,4	1524	37,6	0,86	0,32	
2	π	9,1	1673	35	0,815	0,273	
3	2π	12,5	2162	29,4	0,603	-0,21	
4	2π	15,9	2684	31,7	0,608	0,23	

Таблица 4. Результаты электродинамического моделирование конструкции k=3

	Параметры:						
Номер моды, т	<i>Ψ</i> _m , рад	$f_{ m 0m},$ GHz	$Q_{0\mathrm{m}}$	$ ho_{ m m}, \Omega$	$M_{ m m}$	$G_{ m em}/G_{ m o}$	
1	π	8,1	1452	35.6	0,876	0,146	
2	π	8,8	1581	32	0,838	0,2452	
3	2π	15,8	2060	28	0,616	0,222	
4	2π	18,9	2426	35	0,3862	0,3422	

Результаты исследований, приведенные на рисунке 3, показывают, что уменьшение запретной зоны вокруг пролетных труб (за счет увеличения числа стержней и приближения их к пролетным трубам) приводит к уменьшению резонансной частоты основной моды (m=1) на 10% и резкому увеличению, примерно на 25-30%, частот высших объемных мод (m=3,4). При этом величина характеристического сопротивления для мод (m=1,2,3) уменьшается на 10-15%, а для 4-й моды, наоборот, возрастает на 25%.

Это позволяет в широких пределах регулировать соотношения резонансных частот и находить оптимальные режимы, при которых автоколебания отсутствуют.

Рисунок 3. Изменения частоты (а) и характеристического сопротивления (б) разных мод для трех исследуемых моделей

3. Заключение

Найдены оптимальные конфигурация и расположение стержней в конструкции двухзазорного резонатора двуствольного клистрона, работающего в Х-диапазоне частот на основном квази-ТЕМ виде колебания. Удалось добиться отсутствия самовозбуждения прибора при работе на высшем квази- *H*₁₁₀ виде колебаний (m=3).

Определены условия, при которых реализуются наилучшие условия для взаимодействия поля с многолучевыми потоками при работе одновременно на π - и 2π видах колебаний.

Данное исследование было проведено при поддержке Российского фонда фундаментальных исследований в рамках НИР (проект № 19-07-0611\21).

Список литературы

- Korolyov A.N., Gelvich E.A., Zhary Y.V., et. al. «Multiple-Beam Klystron Amplifiers: Performance Parameters and Development Trends» // IEEE Transactions on Plasma Science. – June 2004. – T. 32, №. 3, C. 1109-1118.
- 2. В.С. Медовиков. Создание мощных и сверхмощных низковольтных клистронов на основе многолучевых электронно-оптических систем // Радиотехника 2000. №.2 С.58-61.
- 3. Yaogen Ding et al. Research progress on X-band Multi-Beam Klystron // IEEE Transaction on Electron Devices. 2009. T. 56. №. 5
- 4. А. А. Тув. Трехсантиметровый мощный широкополосный низковольтный многолучевой усилительный клистрон двухствольной конструкции // Радиотехника. 2000. №.2. С.51-53.
- 5. Пугнин В.И., Юнаков А.Н. Проблемы создания мощных широкополосных клистронов // Радиотехника. 2004. №. 6. С. 17-21.
- 6. Кацман Ю. А. Вопросы теории многорезонаторных клистронов // М.: Связьиздат. 1958. С.176.
- Smirnov A.V., Duly D.Yu. Rod-loaded and PBG multibeam klystron cavities // Proc. of Particle Accelerator Conf. (PAC-2005). Knoxville, Tennessee,. – 2005. – C. 3095–3096.
- Ливчина А.В., Царев В.А. Новые типы фотонно-кристаллических двухзазорных резонаторов для миниатюрных многолучевых клистронов коротковолновой часть СВЧ диапазона // письма в ЖТФ. – 2020. – Т. 46. – №. 3. – С. 35.
- 9. Мучкаев В.Ю., Царев В.А. // REZON. Свидетельство об официальной регистрации программы для ЭВМ. №. 2011611748 от 24.02.2011.
- Wessel-Berg, T. A General Theory of Klystrons with Arbitrary, Extended Interaction Fields // Technical Report, Stanford Microwave Laboratory Rep. – March 1957 – No.376.