УДК 621.385.69

Точный синтез планарных индуктивностей интегральных схем СВЧ

А.М. Румянцева, Э.Ю. Седышев

СПбГУТ им. проф. М.А. Бонч-Бруевича

Аннотация: в работе исследуется математический аппарат синтеза индуктивностей для интегральных схем СВЧ. Произведено сравнение различных методик синтеза круглых спиральных индуктивностей и алгоритмов их расчёта. Рассмотрено влияние паразитных параметров на номинал индуктивных элементов схем. Сопоставлением полученных результатов расчёта с результатами эксперимента произведена сверка методик между собой. С помощью различных методов оценки реактивностей выполнен эксперимент.

Ключевые слова: интегральные схемы, сверхвысокие частоты, плоские спиральные индуктивности, паразитные параметры, квазидинамическое приближение, ЧПУ

1. Введение

Изготавливая конструктивные индуктивные элементы, инженерам для получения точного номинала индуктивности с конкретной геометрией в требуемом диапазоне частот необходимо иметь высокую разрешающую способность технологического процесса, а также выбрать наиболее точную методику расчёта.

2. Подготовка образцов и экспериментальные результаты

Спиральная индуктивность (рисунок 1) может быть рассмотрена с помощью таких параметров как: число витков (N), внутренний диаметр (D1), внешний диаметр (D2), ширина спирали (B), расстояние между витками (t) (рисунок 1, а). 3D-модель индуктивного элемента представлена на рисунке 1, б.

Для анализа точности методик расчёта был изготовлен макет, содержащий планарную индуктивность с перемычкой и две контактные площадки (рисунок 1, в).

Рисунок 1. Спиральная индуктивность: а) Чертёж планарной круговой индуктивности; б) 3Dмодель планарной круговой индуктивности; в) общий вид исследуемого макета.

Ранее были рассмотрены формулы расчёта плоских спиральных индуктивностей различных инженерных методик [1]. В данной работе с помощью квазистатического метода производилась оценка точности этих методик. По итогу работы были выбраны три методики расчёта индуктивностей для дальнейшего исследования [2, 3, 4]. В таблице 1 представлены выбранные формулы и результаты расчёта планарной индуктивности синтезированного макета, где: *R*2 – внешний радиус, *R*1 –

внутренний радиус, φ – коэффициент заполнения, Dср – средний диаметр, a – средний радиус, b – ширина катушки.

T . C	1	<i>ф</i> "
гаолица .	I.	Формулы расчета индуктивности

N₂	Формула индуктивности	Полученное значение
1	$L = 2,475 \cdot Dcp \cdot \sqrt[3]{N^5} \cdot lg(\frac{4 \cdot Dcp}{b})$ где $Dcp = 0,5 \cdot (D2 + D1), \ b = R2 - R1,$ $R2 = 0,5 \cdot D2, \ R1 = 0,5 \cdot D1$	<i>L</i> = 74,142 нГн
2	$L = 4,978 \cdot a \cdot \sqrt[3]{N^5} \cdot \lg(\frac{8 \cdot a}{b})$ где $a = 0,5 \cdot (R2 + R1).$	<i>L</i> = 74,562 нГн
3	$L = N^{2} \cdot D \operatorname{cp} \cdot \left[\ln \left(\frac{2,46}{\varphi} \right) + 0,2 \cdot \varphi^{2} \right]$ где $\varphi = \frac{D2 - D1}{D2 + D1}.$	<i>L</i> = 78,675 нГн

В СВЧ диапазоне паразитные параметры проводников и диэлектрической подложки оказывают влияние на работу устройства. На рисунке 2 представлена принципиальная схема макета с учётом паразитных параметров.

Рисунок 2. Принципиальная схема колебательного контура, *L* - индуктивность, *L*_п – паразитная индуктивность, *C*_{п1}, *C*_{п2} – паразитные ёмкости.

При расчёте перемычки планарной индуктивности, представляющую собой также индуктивность, используется формула индуктивности одиночного прямолинейного круглого провода

$$L_{\pi} = 2 \cdot l \cdot \left(\ln \frac{4l}{d} - 1 \right) \cdot 10^{-9}, \tag{1}$$

где $L_{\rm n}$ – индуктивность одиночного прямолинейного круглого провода, l –длина провода, d – диаметр провода. Индуктивность перемычки в исследуемом макете составила 9,47 нГн.

Паразитные ёмкости рассчитываются по формуле плоского конденсатора

$$C_{\pi} = \frac{\varepsilon_0 \varepsilon_r S}{h},\tag{2}$$

где $C_{\rm n}$ – ёмкость плоского конденсатора, ε_0 – электрическая постоянная, ε_r – диэлектрическая проницаемость диэлектрика, S – площадь пластины конденсатора, h – высота подложки.

В предложенном макете, как видно на рисунке 1, в, имеется две паразитные ёмкости C_{n1} и C_{n2} со значениями 0,649 пФ и 1,168 пФ соответственно.

Был проведён эксперимент со снятием амплитудно-частотной характеристики (АЧХ) макета. Результаты эксперимента представлены на рисунке 3, а.

Далее в нашем исследовании была произведена эмуляция работы эквивалента на компьютере. Первым этапом мы рассмотрели значения индуктивностей,

представленных в таблице 1 без учёта паразитных параметров. Во втором учитывались паразитные параметры с девиацией 25...40%. В таблице 2 приведено сравнение параметра S21 с результатами квазидинамического приближения. Полученная A4X при эмуляции для варианта 2.6 из таблицы 2 представлена на рисунке 3, б.

Рисунок 3. Амплитудно-частотная характеристика макета: а) полученная в эксперименте; б) полученная на компьютере.

	L.	Результаты полученные на компьютере											
	мен	1.1	1.2	1.3	2.1	2.2	2.3	2.4	2.5	2.6			
Ħ	ери												
ML	КСП												
f,	Ð												
	S21,	S21,	S21,	S21,	S21,	S21,	S21,	S21,	S21,	S21,			
	dB	dB	dB	dB	dB	Db	Db	dB	dB	dB			
45	-0,24	-0,19	-0,19	-0,21	-0,21	-0,22	-0,21	-0,32	-0,13	-0,09			
90	-0,42	-0,71	-0,71	-0,78	-0,79	-0,82	-0,77	-1,16	-0,48	-0,35			
207	-1,14	-2,9	-3,10	-3,11	-3,15	-3,23	-3,07	-4,19	-2,11	-1,63			
288	-2,84	-4,47	-4,51	-4,81	-4,88	-5	-4,77	-6,2	-3,46	-2,77			
360	-3,51	-5,87	-5,59	-6,2	-6,31	-6,46	-6,17	-7,78	-4,66	-3,84			
486	-5,55	-7,87	-7,91	-8,31	-8,51	-8,72	-8,23	-10,12	-6,6	-5,68			
594	-7,98	-9,39	-9,42	-9,83	-10,13	-10,39	-9,89	-11,8	-8,1	-7,16			
720	-7,64	-10,85	-10,93	-11,96	-11,78	-12,12	-11,48	-13,5	-9,67	-8,78			
819	-11,2	-11,92	-11,96	-12,4	-12,94	-13,35	-12,6	-14,7	-10,79	-9,97			

Таблица 2. Результаты квазидинамического приближения

Варианты с уточнением параметров цепи для каждого этапа при эмуляции в программе:

1.1 - L=74,142 нГн;2.1 - L=74,142 нГн, L_{n} , C_{n1} , C_{n2} ;1.2 - L=74,562 нГн;2.2 - L=74,142 нГн, L_{n} +25%, C_{n1} +25%, C_{n2} +25%;1.3 - L=78,675 нГн;2.3 - L=74,142 нГн, L_{n} -25%, C_{n1} -25%, C_{n2} -25%;2.4 - L=74,142 нГн +25%, L_{n} , C_{n1} , C_{n2} ;2.5 - L=74,142 нГн -25%, L_{n} , C_{n1} , C_{n2} ;2.6 - L=74,142 нГн -40%, L_{n} +40%, C_{n2} +40%;

3. Заключение

Как видно из таблицы 2 результаты, полученные в эксперименте и на компьютере при варианте 2.6, имеют самые близкие значения. Полученные результаты показывают, что для исследуемого диапазона частот наиболее точна формула №1 с учётом паразитных параметров и разбросом значений 40%.

В дальнейшем планируется изготовление опытных образцов индуктивностей (рисунок 4) на станках с ЧПУ в программной среде FREECAD, а также создание программной библиотеки конструктивных индуктивных элементов с известными номиналами.

Рисунок 4. Варианты исполнения опытных образцов индуктивностей с номиналом: a) 104,873 нГн; б) 180,231 нГн; в) 279,201 нГн; г) 323,061 нГн.

Для получения более высокой точности расчёта необходимо увеличить частотный диапазон исследования, а также уменьшить зависимость передаточной характеристики от паразитных элементов (увеличить номинал исследуемой индуктивности).

Список литературы

- Бочаров Е.И., Румянцева А.М., Седышев Э.Ю. Сравнение методов расчета конструктивных индуктивностей интегральных схем СВЧ // Региональная научно-методическая конференция магистрантов и их руководителей; сборник лучших докладов конф. / Сост. Н. Н. Иванов. – СПб.: СПбГУТ, – 2021. – С. 330-334.
- 2. Скрипников Ю.Ф. Колебательный контур. М.: Энергия, 1970. 128 с.
- Торгонский Л.А. Проектирование интегральных микросхем и микропроцессов: учебное пособие. В 3-х разделах. – Томск: ТУСУР, 2011. – Раздел 2. – 228 с.
- 4. Sunderarajan S. Mohan, Maria del Mar Hershenson, Stephen P. Boyd, and Thomas H. Lee. Simple Accurate Expressions for Planar Spiral Inductances// IEEE J. Solid-State Circuits, vol. 34, no. 10, pp. 1419-1424, October 1999.