УДК 621.372.8

Математическое моделирование и экспериментальное исследование микрополосковых фазовращателей на основе одиночной линии передачи со ступенчатым шлейфом

В.П. Мещанов¹, К.А. Саяпин², Д.Н. Шерстюков³

¹НПП «НИКА-СВЧ»

²Саратовский национальный исследовательский государственный университет им. Н.Г. Чернышевского

³Саратовский государственный технический университет им. Гагарина Ю.А.

Аннотация: в данной работе была разработана схемотехническая модель микрополоскового фазовращателя на основе одиночной ступенчатой линии передачи со ступенчатым короткозамкнутым шлейфом и проведено его теоретическое и экспериментальное исследование. Измерение электрических характеристик 90°-фазовращателей показало отклонение фазочастотной характеристики (ФЧХ) от номинального значения не более чем на 1,2° в диапазоне частот 2...4 ГГц, максимальное значение КСВН не превысило 1,2. Полученные результаты исследований позволили сделать заключение о возможности реализации широкополосных устройств фазового смещения радиосигналов предложенной топологии на микрополосковой линии передачи.

Ключевые слова: фазовращатель, линия передачи, микрополосковая линия, сверхвысокие частоты

1. Введение

Среди многообразия известных структур широкополосных фиксированных фазовращателей (ФФ) наиболее простыми с технологической точки зрения являются фазовращатели с фазосдвигающим каналом (ФК) на основе одиночных линий передачи (ЛП) со шлейфом [1-7]. К ним, в частности, относятся структуры на ступенчатых [4, 5] и плавных [6] линиях передачи с однородными короткозамкнутыми шлейфами. Исследованная авторами в работе [8] структура отличается от [4-6] применением в ней ступенчатого шлейфа, что, как показал анализ в приближении Тволн, позволяет обеспечить меньшие габариты устройства по сравнению с указанными аналогами при сопоставимых частотных характеристиках. При этом, изменяя начальные приближения, удалось получить два оптимальных решения задачи синтеза, отличающихся закономерностями изменения волнового сопротивления ЛП.

Однако рассмотренные в работе [8] фазовращатели в приближении Т-волн не могут быть рекомендованы для реализации на микрополосковой ЛП, поскольку одноволновое приближение не учитывает дисперсию электромагнитных волн и неоднородности в местах сочленения ЛП.

Целью данной работы является математическое моделирование и экспериментальное исследование микрополосковой реализации фиксированного фазовращателя с фазосдвигающим каналом на основе одиночной ступенчатой линии передачи с короткозамкнутым ступенчатым шлейфом.

2. Схемотехническое моделирование

На основе двух типов решений задачи параметрического синтеза в приближении Т-волн, полученных авторами в работе [8] для случая $\varphi = 45^{\circ}$, $\varkappa = 2$, разработаны фазовращатели на микрополосковой линии передачи для рабочего диапазона частот 2...4 ГГц. Их схемотехническая модель представлена на рисунке 1. В качестве подложки микрополосковой ЛП задан ламинат Rogers RO4003C с диэлектрической проницаемостью $\varepsilon = 3,55$, толщиной h = 0,813 мм и тангенсом угла диэлектрических потерь $tg\delta = 0,0027$, толщина двухсторонней металлизации t = 18 мкм.

Рисунок 1. Схемотехническая модель трехступенчатого фазовращателя на микрополосковой линии передачи.

Анализ полученной схемотехнической модели выполнялся в программе AWR Місгоwave Office. Следует отметить, что в схемотехнической модели учитывались особенности распространения электромагнитных волн в средах с неоднородным диэлектрическим заполнением, а также влияние скачков волнового сопротивления в местах сочленения отрезков ЛП с различными геометрическими размерами (элементы *STEP*₁-*STEP*₄) и неоднородностей, локализованных в месте соединения центрального отрезка ЛП со шлейфом (элемент *MTEE*). Это привело к тому, что частотные характеристики микрополосковой модели несколько ухудшились по сравнению с моделью в приближении Т-волн: так, значение КСВН превысило 1,7, а отклонение ФЧХ от номинала составило более 10° , тогда как для модели в приближении Т-волн эти параметры составляли не более 1,2 и 1° соответственно. Для коррекции частотных характеристик дополнительно была решена задача параметрической оптимизации, поставленная в виде чебышевской аппроксимации:

$$\min_{AM} \max_{f \in [2ITu, 4ITu]} \left| \varphi_0 - \varphi(f, \overline{AM}) \right|$$

$$\min_{AM} \max_{f \in [2ITu, 4ITu]} KCBH(f, \overline{AM})$$

где $\varphi(f, \overline{AM}) - \Phi$ ЧХ фазовращателя; *КСВН* (f, \overline{AM}) – коэффициент стоячей волны по напряжению плеч фазосдвигающего канала; $\overline{AM} = L_1, L_2, L_3, L_4, L_5, L_{OK}, W_1, W_2, W_3, W_4, W_5$ – вектор варьируемых параметров, включающий длины $L_1, L_2, L_3, L_4, L_5, L_{OK}$ и ширину W_1, W_2, W_3, W_4, W_5 отрезков ЛП (рисунок 1). Решение задачи осуществлялось с помощью симплексного метода оптимизации (метод Нелдера-Мида) в программном

пакете AWR Microwave Office.

Для первого типа ФФ отклонение ФЧХ от номинального значения не превышает 0,5454°, а *КСВН_{макс}* составляет 1,0578; для второго типа ФФ эти параметры составляют 0,5088° и 1,0642 соответственно.

Таким образом, проведение параметрической оптимизации микрополосковой схемотехнической модели позволило получить частотные характеристики ФФ первого и второго типов, наиболее близкие к характеристикам соответствующих моделей в приближении Т-волн.

3. Электродинамическое моделирование и экспериментальные результаты

Для уточнения полученных результатов схемотехнического моделирования построены 2,5D-модели $\Phi\Phi$ (рисунок 2) и проведено их электродинамическое моделирование в планарном электромагнитном симуляторе AWR AXIEM пакета AWR DE с помощью метода моментов. На рисунке 4 представлены полученные частотные характеристики $\Phi\Phi$ с Φ K первого типа, а на рис. 5 – характеристики $\Phi\Phi$ с Φ K второго типа. Длина устройств *L* в обоих случаях составляет 45 мм.

Рисунок 2. Топология электродинамических моделей ФК первого (а) и второго (б) типов.

Для экспериментальной проверки достоверности полученных результатов были изготовлены опытные образцы фазовращателей первого и второго типов. В качестве материала подложки использован заданный при синтезе ламинат Rogers RO4003C ($\varepsilon_r = 3,55$, h = 0,813 мм, $tg\delta = 0,0027$, t = 18 мкм). Формирование топологии ФК производилось методом химического травления в растворе хлорного железа. Изготовленные ФК фазовращателей, помещенные в контактное устройство, включающее в себя два коаксиально-микрополосковых перехода с коннекторами типа SMA и держатель печатной платы, представлены на рисунках За и 36. Для измерения их электрических параметров использовался векторный анализатор цепей (ВАЦ) «Rohde&Schwarz» ZVA-40. Двухпортовая TOSM-калибровка ВАЦ осуществлялась с помощью коаксиального калибровочного набора «Микран» НКММ-03-03P в канале сечением 3,5/1,52 мм [11].

Рисунок. 3. Фазосдвигающие каналы первого (а) и второго (б) типа в измерительной оснастке.

Результаты экспериментального исследования ФФ первого типа приведены на рисунке 4. В этом случае максимальное значение КСВН составляет 1,17, отклонение ФЧХ от номинального значения фазового сдвига не превышает 1,16°.

Рисунок 4. Частотные характеристики ЕМ-модели (пунктирная линия) и экспериментального образца (сплошная линия) ФФ первого типа: а) ФЧХ; б) КСВН портов ФК.

Экспериментальные частотные характеристики $\Phi\Phi$ второго типа приведены на рисунке 5. Здесь максимальное значение КСВН не превышает 1,11, а отклонение Φ ЧХ от номинального значения фазового сдвига составляет 1,1°.

Рисунок 5. Частотные характеристики ЕМ-модели (пунктирная линия) и экспериментального образца (сплошная линия) ФФ второго типа: а) ФЧХ; б) КСВН портов ФК.

Незначительные расхождения между теоретическими и экспериментальными результатами объясняются в первую очередь потерями, вносимыми коаксиальномикрополосковыми переходами, и технологическими допусками при изготовлении.

3. Заключение

Численное и экспериментальное исследование микрополосковых фиксированных фазовращателей с фазосдвигающим каналом на основе одиночной ступенчатой линии передачи со ступенчатым шлейфом для рабочего частотного диапазона 2...4 ГГц, разработанных на основе решений в приближении Т-волн для случая $\varphi_0=45^\circ$, $\varkappa=2$, показало, что предлагаемые структуры обладают приемлемыми частотными характеристиками, находящимися на уровне аналогов, при значительно меньших габаритных размерах. Практическая реализация предлагаемых устройств не осложнена технологическими трудностями.

Таким образом, можно сделать вывод о целесообразности использования ступенчатых шлейфов в структуре микрополосковых ФФ.

Список литературы

- Schiffman B.M. A new class of broad-band microwave 90-degree phase shifters // IRE Trans. 1958. V. MTT-6. – No. 4. – P. 232-237.
- 2. Wilds R.B. Try $\lambda/8$ stubs for fast fixed phase shifts // Microwave & RF. 1979. Vol. 6. No. 12. P. 67-68.
- 3. Алексеев А.Н., Аристархов Г.М. Широкополосные дифференциальные фазовращатели СВЧ на основе одиночных линий передачи // Радиотехника и электроника. 1988. Т. 33. № 1. С. 63-69.
- Губин Д.С. и др. Синтез фазовращателей на основе ступенчатой одиночной линии передачи со шлейфом // Радиотехника и электроника. – 2010. – Т. 55. – № 2. – С. 162-167.
- 5. Губин Д.С. и др. Синтез фазовращателей на основе ступенчатой одиночной линии передачи класса II со шлейфом. // Радиотехника и электроника. – 2004. – Т. 49. - № 7. – С. 801-805.
- 6. Базлов Н.Н. и др. Сверхширокополосные фазовращатели на основе плавной неоднородной одиночной линии передачи // Антенны. 2011. № 1. С. 37-43.
- 7. Jian-Xiao Wang et al. Design of a Wideband Differential Phase Shifter with the Application of Genetic Algorithm // Progress In Electromagnetics Research Letters. 2014. Vol. 48. P. 45-49.
- Алексеев В.В. и др. Исследование фиксированных фазовращателей на основе одиночной ступенчатой линии передачи со ступенчатым шлейфом // Радиотехника. 2019. Т 83. № 7 (10). С. 66-72.
- 9. Маттей Г.Л., Янг Л., Джонс Е.М.Т. Фильтры СВЧ, согласующие цепи и цепи связи. В 2-х т. М.: Связь, 1972.
- Фуско В. СВЧ-цепи. Анализ и автоматизированное проектирование / В. Фуско; Перевод с англ. А. А. Вольман, А. Д. Муравцова; Под ред. В. И. Вольмана. – М.: Радио и связь, 1990.
- 11. Наборы переходов коаксиальных [Электронный ресурс] // АО «НПФ «Микран». URL: https://www.micran.ru/productions/Accessory/sets/set_of_connectors/ (дата обращения: 06.03.2021).