## УДК

## Измерение параметров сегнетоэлектрических пленок в диапазоне СВЧ

И.Г. Мироненко<sup>1</sup>, А.А. Фирсенков<sup>2</sup>, А.А. Иванов<sup>1,2</sup>, Д.В. Велькин<sup>2</sup>, В.И. Мельник<sup>1</sup>, А.А. Семенов<sup>1</sup>, П.Ю. Белявский<sup>1</sup>, В.С. Севериков<sup>2</sup>, М.В. Орлова<sup>2</sup>

<sup>1</sup>Санкт-Петербургский государственный электротехнический университет «ЛЭТИ» <sup>2</sup>ОАО «Завод Магнетон»

Аннотация: в данной работе показано, что структура "диэлектрическая подложка - МНСЭП", является высокодобротной на сверхвысоких частотах, имеет низкую температурную зависимость своих параметров и может стать основой для построения устройств с электрически перестраиваемыми АЧХ и ФЧХ, работающих в миллиметровом диапазоне длин волн.

Ключевые слова: резонатор, нанокомпозит, многощелевая линия, титанат бария

В настоящее время в электронной компонентной базе (ЭКБ) применяются сегнетоэлектрики (СЭ) на основе титанатов, цирконатов и танталатов [1]. В СВЧ электронике широко используются твердые растворы бария-стронция  $Ba_xSr_{1-x}TiO_3 -$  (BSTO), обладающие высоким значением диэлектрической проницаемости ( $\epsilon$ ), значительной нелинейностью и относительно малым значением тангенса угла диэлектрических потерь ( $tg\delta$ ) по сравнению с другими СЭ материалами. Возможность добавлять в твердый раствор BSTO примесей, таких как Mn, Mg и др. [1] позволяет варьировать электрофизические характеристики СЭ пленок. Отличительным преимуществом сегнетоэлектрических пленок (СЭП) является возможность их применения в элементах ЭКБ и функциональных модулях в интегральном исполнении, что в свою очередь исключает применение дополнительных сборочно монтажных и настроечных операций. Интегральный поход в сочетании с микроэлектронной технологией и относительно низкая стоимость материалов могут обеспечить значительные преимущества электрически перестраиваемых устройств на основе сегнетоэлектрических пленок и перестраиваемых устройств на основе сегнетоэлектрических промость материалов могут обеспечить значительные преимущества электрически перестраиваемых устройств на основе сегнетоэлектрических пленочных структур в условиях серийного производства.

Разработка и макетирование СВЧ устройств на основе сегнетоэлектриков, которые обладают рядом преимуществ по отношению к устройствам, изготовленным на полупроводниках и ферритах, продолжается уже на протяжении тридцати лет. Интерес разработчиков СВЧ устройств на основе СЭ в последние годы возрос в связи с фундаментальными исследованиями и полученными результатами, а именно с возможностью получения СЭП с температурно стабильными характеристиками, что ранее являлось сдерживающим фактором их промышленного применения. Наиболее изученными в СВЧ диапазоне являются многослойные нанокомпозитные СЭП (МНСЭП) [2, 3] на основе твердых растворов ВЅТО с разной концентрацией бария в каждом из нанослоев, относительная диэлектрическая проницаемость которых, по отношению к полю СВЧ, изменяется более чем в два раза при подаче внешнего электрического поля напряженностью 1.5-3 кВ/мм.

Для определения электрофизических параметров МНСЭП структурдиэлектрической проницаемости и тангенса угла диэлектрических потерь, могут быть применены резонансные методы, которые позволяют с высокой точностью охарактеризовать их свойства в широком диапазоне частот. Одним из таких методов, для определения параметров МНСЭП по измеренной резонансной частоте и нагруженной добротности, является измерение в объемном резонаторе. В этом случае структура «МНСЭП – диэлектрическая подложка» будет включена в объемный резонатор частично, как изображено на рис. 1. Очевидно, что характеристики МНСЭП (є и tgδ) должны оказывать заметное влияние на резонансную частоту и добротность резонатора. В противном случае может возникнуть большая погрешность их измерения и определения. С другой стороны, конструкция резонатора, способ его возбуждения и возможность выбора связи резонатора с возбуждающим объемом должны быть просты и надежны.



а







**Рисунок 1.** Объёмный прямоугольный резонатор – а) эскиз конструкции; б) резонатор с установленной вдоль узкой стенки диэлектрической структурой; в) резонатор с элементами связи

Диэлектрический образец с МНСЭП устанавливается вдоль узкой стенки отрезка волновода рис. 1.б, а замкнутый объём резонатора образуется за счёт тонких металлических пластин прикладываемых к его боковым поверхностям, рис. 1.в. Возбуждение резонатора выполняется через круглые отверстия связи, сделанные в тонких металлических пластинах,диаметр которых рассчитывается с учетом обеспечения их минимальной реактивности, чтобы уменьшить влияние на значение измеряемой резонансной частоты, что в конечном итогеснизит погрешность в определении диэлектрических свойств МНСЭП.

Измерение параметров пленок проводились на векторном анализаторе цепей фирмы Agilent. На рис. 2 изображена характеристика пустого объемного резонатора размером 7,10x3,40x5,05мм. Расчетное значение собственной резонансной частоты основного типа колебания резонатора с такими геометрическими размерами равно 36,424 ГГц, результат измерения его частоты на векторном анализаторе показывает значение 36,449ГГц, рис. 2, видно, что отличие составляет менее 0.07%. Измеренная нагруженная добротность резонатора имеет величину более четырех тысяч. Таким образом, полученные данные гарантируют высокую точность определения характеристик ( $\varepsilon_{3\phi\phi}$  и tgδ) измеряемых структур используемым резонансным методом.



**Рисунок 2.** Резонансная характеристика пустого объемного резонатора с возбуждением через круглые отверстия диафрагм.

Расчеты характеристик МНСЭП по экспериментальным значениям резонансной частоты и добротности резонатора были выполнены на базе электродинамических моделей, подробно описанных в [4]. Точность определения диэлектрической проницаемости сегнетоэлектрической пленки в объемном резонаторе тем выше, чем выше коэффициент включения пленки. Поэтому необходимо подбирать оптимальное заполнение резонатора.

На рис. 3 представлена резонансная характеристика измеряемой структуры с многослойной СЭП, изготовленной по технологическому процессу JF-2. Источником погрешности в определении є и tgδ MHCЭП являются только инструментальные погрешности, так как расчет є и tgδ принципиально точен [4]. В таблице1, показаны результаты измерений резонансной частоты и добротности объемного резонатора с диэлектрическим заполнением для различных диэлектрических структур с MHCЭП, произведенных в разных технологических режимах, и даны численные результаты расчетов их параметров.



**Рисунок 3.** Резонансная характеристика пустого объемного резонатора с возбуждением через круглые отверстия диафрагм

Таблица 1. Параметры образцов

| № образца | $f_{u_{3M}},$ ГГц | ${\it Q}_{{}_{\rm H3M}}$ | $Q_{ m pac}$ | 3    |  |
|-----------|-------------------|--------------------------|--------------|------|--|
| HF-1      | 34.556            | 681                      | 90           | 1272 |  |
| FF-4      | 34.588            | 694                      | 90           | 1251 |  |
| EF-2      | 34.712            | 775                      | 91           | 1167 |  |
| DF-1      | 34.800            | 805                      | 87           | 1105 |  |
| CF-3      | 34.975            | 883                      | 79           | 973  |  |
| BF-2      | 35.482            | 977                      | 34.2         | 513  |  |

Типовые зависимости диэлектрической проницаемости и тангенса угла диэлектрических потерь от температуры показаны на рис. 4.



**Рисунок 4.** Зависимость характеристик МНСЭП от температуры - а) диэлектрической проницаемости; б) тангенса угла диэлектрических потерь

Измерение диэлектрической проницаемости и тангенса угла диэлектрических потерь МНСЭП пленки можно выполнить, используя полуволновой резонатор, образованный щелевой или многощелевой линией на слоистой диэлектрической подложке (1), рис. 5.а, установленный в разборный прямоугольный волновод (2). На рис. 5.б представлены фотографии собранной измерительной ячейки. Расчет параметров полуволнового щелевого резонатора подробно описан в работе [4].



**Рисунок 5.** Волноводная измерительная ячейка – а) эскиз конструкции с многощелевым резонатором на МНСЭП; б,в) фотографии собранной ячейки

Измеренная резонансная характеристика многощелевого резонатора с МНСЭП выполненного по технологическому процессу СF-3 изображена на рис. 6. В таблице 2, представлены расчетные параметры є и tgδ для различных щелевых полуволновых резонаторов, полученных в разных технологических режимах.



Рисунок 6. Частотная зависимость коэффициента передачи S<sub>21</sub> полуволнового четырех щелевого планарного резонатора с МНСЭП

| Образец<br>из серии | Четырех щелевой резонатор |      | Щелевой резонатор |      |
|---------------------|---------------------------|------|-------------------|------|
|                     | tgδ                       | 3    | tgδ               | 3    |
| HF-1                | 0.01110                   | 1276 | 0.01107           | 1267 |
| FF-4                | 0.01114                   | 1243 | 0.01101           | 1247 |
| EF-2                | 0.01112                   | 1060 | 0.01085           | 1058 |
| DF-1                | 0.01152                   | 1121 | 0.01151           | 1108 |
| CF-3                | 0.01250                   | 988  | 0.01243           | 977  |

Таблица 2. Расчетные параметры щелевых полуволновых резонаторов

Таким образом, полученные экспериментальные результаты показывают, что структура "диэлектрическая подложка - МНСЭП", является высокодобротной на сверхвысоких частотах, имеет низкую температурную зависимость своих параметров и может стать основой для построения устройств с электрически перестраиваемыми АЧХ и ФЧХ, работающих в миллиметровом диапазоне длин волн.

## Список литературы

1. Воротилов К. А., Мухортов В. М., Сигов А. С. Интегрированные сегнетоэлектрические устройства. – 2011.

2. Щелевая линия: пат. 2443042 Рос. Федерация: МПК Н01Р 3/08 / Мироненко И.Г., Иванов А.А., Карманенко С.Ф., Семенов А.А., Белявский П.Ю.; заявл. 19.11.2010; опубл. 20.02.2012.

3. Балашов В. М. и др. Технология и диэлектрические свойства многослойных нанокомпозитных сегнетоэлектрических пленок //Вопросы радиоэлектроники. – 2018. – №. 1. – С. 62-67.

4. Мироненко И. Г. и др. Сегнетоэлектрические пленки и устройства на сверх- и крайне высоких частотах //СПб.: Элмор. – 2007.