# Микрополосковые ферритовые развязывающие приборы с улучшенными характеристиками для СВЧ аппаратуры мм-диапазона

А.С. Семенов, А.Г. Налогин, А.А. Алексеев, А.В. Цыберт, А.Ю. Безруков, А.Д. Нагорнов АО «НПП «Исток» им. Шокина»

Аннотация: в докладе рассмотрены конструктивные и технологические особенности, возникающие перед разработчиком при создании микрополосковых ферритовых устройств для СВЧ аппаратуры мм — диапазона длин волн. Приведены результаты разработок микрополосковых ферритовых циркулятора и вентиля миллиметрового диапазона длин волн, обладающих улучшенными характеристиками по сравнению с их отечественными и зарубежными аналогами.

**Ключевые слова:** мм – диапазон длин волн, Ка диапазон частот; микрополосковый ферритовый вентиль, ферритовый Y-циркулятор, электродинамическое моделирование, никель-цинковая шпинель.

#### 1. Введение

Одной из важнейших задач современной СВЧ - электроники является разработка радиоэлектронной аппаратуры (РЭА), работающей в миллиметровом диапазоне длин волн. Освоение миллиметрового диапазона позволяет решить актуальные задачи в области навигации, связи, медицины и обороноспособности страны.

Переход в миллиметровый диапазон длин волн позволит уменьшить габаритные размеры современной радиоаппаратуры, повысить разрешающую способность радионавигационных систем и увеличить плотность передачи данных, что особенно актуально для связи 5-го поколения (5G).

Важное место во всех радиосистемах занимают ферритовые развязывающие приборы, которые обеспечивают равномерность уровня СВЧ мощности генераторов, устойчивость работы усилительных цепочек на переменные нагрузки, позволяют распределять мощность СВЧ сигнала в цепях радиолокационных станций.

Несмотря на то, что на мировом рынке имеются микрополосковые ферритовые развязывающие приборы мм-диапазона длин волн, их электрические и массогабаритные характеристики не удовлетворяют современным требованиям разработчиков перспективной радиоэлектронной аппаратуры. Для создания РЭА нового поколения требуются МФРП с увеличенной рабочей полосой частот, с низкими прямыми потерями и с уменьшенными массогабаритными характеристиками.

В рамках научно-исследовательских и опытно-конструкторских работ, проводимых в НПП «Исток» требовалось разработать МФРП с улучшенными характеристиками. Требования к разрабатываемым приборам приведены в таблице 1.

Таблица 1. Требования к разрабатываемым приборам

| Тип прибора                | Диапазон<br>рабочих частот<br>∆f, ГГц | КСВН  | Прямые<br>потери<br>αпр, дБ | Развязка /<br>обратные потери<br>араз/аобр, дБ | Входная непрерывная мощность<br>Рвх, Вт |
|----------------------------|---------------------------------------|-------|-----------------------------|------------------------------------------------|-----------------------------------------|
| Циркулятор<br>Ка диапазона | 36,538,5                              | < 1,4 | < 0,8                       | > 20                                           | 0,1                                     |
| Вентиль<br>Ка диапазона    | 3337                                  | < 1,4 | < 1                         | > 20                                           | 2                                       |
| Вентиль<br>V-диапазона     | 45,848,9                              | < 1,4 | < 0,9                       | > 18                                           | 0,1                                     |

### 2. Выбор ферритового материала

Ключевым элементом любого ферритового развязывающего прибора является ферритовый материал, за счёт которого удаётся достичь невзаимных свойств у прибора в заданном диапазоне частот. Существующие ферритовые материалы вносят свои особенности при разработке ферритовых приборов миллиметрового диапазона, определяя в них предельно достижимые параметры и характеристики.

На основе исследований проведенных в работах [1, 2, 6], в качестве подложки приборов был выбран ферритовый материал, разработанный в АО «НПП «Исток» им. Шокина» — никель-цинковая шпинель (НЦВ). Этот материал обладает большим значением намагниченности насыщения ( $M_s \approx 380 \text{ кA/м}$ ), что позволит обеспечить широкую полосу рабочих частот у разрабатываемых приборов. Низкий уровень тангенса угла суммарных потерь НЦВ, в свою очередь позволит обеспечить малые потери в прямом направлении прохождения СВЧ сигнала через разрабатываемые приборы.

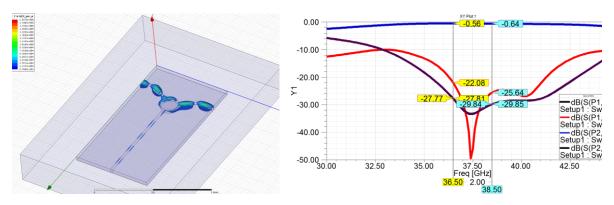
С помощью разработанных в НПП «Исток» измерительных методик и стендов [3], были измерены электромагнитные параметры заготовок из НЦВ для последующего расчёта конструкции разрабатываемых приборов мм-диапазона (таблица 2).

| Наименование<br>параметра       | Обозначение                       | Значение по ТУ | Измеренное значение                     |
|---------------------------------|-----------------------------------|----------------|-----------------------------------------|
| Диэлектрическая проницаемость   | ε                                 | 12,3÷13,7      | 13,0 ± 4 %                              |
| Тангенс угла суммарных потерь   | $\operatorname{tg}(\delta)\Sigma$ | 1,6·10-3       | $1,5\cdot 10^{-3} \pm 3,7\cdot 10^{-4}$ |
| Намагниченность насыщения, кА/м | $4\pi \mathrm{Ms}$                | 378±27         | $380\pm4~\%$                            |

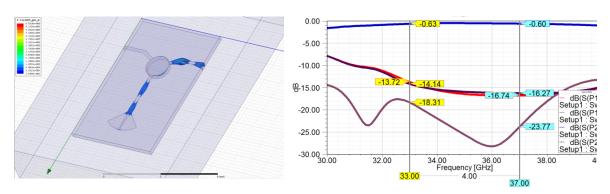
Таблица 2. Электромагнитные характеристики заготовок из НЦВ

### 3. Электродинамическое моделирование конструкции МФРП мм-диапазона.

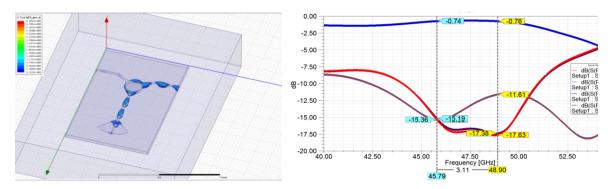
На основе точно измеренных электромагнитных характеристик никель-цинковой шпинели, был произведен аналитический расчёт топологии разрабатываемых приборов по формулам из книги Вамберского М.В. «Конструирование ферритовых развязывающих приборов СВЧ» [4], затем требовалось создать электродинамические модели приборов для анализа их S-параметров и последующей оптимизации их конструкции.


При построении электродинамических моделей микрополосковых ферритовых развязывающих приборов методом конечных элементов используются следующие граничные условия:

1. Рисунок топологии и обратная сторона ферритовой платы считаются идеальными проводниками (за исключением танталовой нагрузки у вентилей), что


исключает из расчёта потери на излучение в свободное пространство.

- 2. Внешнее магнитное поле считается однородным и прикладывается только к области под диском циркуляции приборов.
- 3. Приборы возбуждаются сосредоточенными портами с сопротивлением  $Z_0 = 50$  Ом.
- 4. Ферритовая плата задается в виде двух материалов намагниченного феррита (область циркуляции) и ненамагниченного феррита (остальная часть платы). В намагниченном феррите задается величина намагниченности насыщения материала, а в ненамагниченном феррите нет.


По предложенному Семеновым А.С. алгоритму проектирования [5], созданы и оптимизированы электродинамические модели МФРП мм-диапазона. Оптимизация моделей приборов проводилась путем варьирования радиуса диска циркуляции, ширины подводящих МПЛ и сопротивления нагрузки у ферритовых вентилей. Оптимизированные модели МФРП мм-диапазона длин волн и их S-параметры представлены на рисунках  $1\div 3$ .

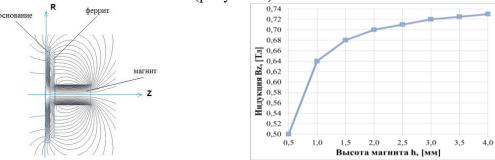


**Рисунок 1.** Распределение электрического поля и S-параметры модели *Y*-циркулятора *Ка*-диапазона частот.



**Рисунок 2.** Распределение электрического поля и S-параметры модели вентиля *Ка*-диапазона частот.



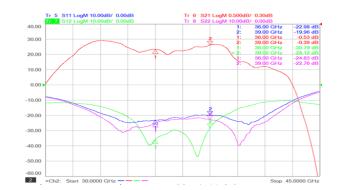

**Рисунок 3.** Распределение электрического поля и S-параметры модели вентиля *V*-диапазона частот.

Таким образом, с помощью электродинамического моделирования и последующей оптимизации, удалось разработать конструкции микрополосковых ферритовых развязывающих приборов миллиметрового диапазона, удовлетворяющие заданным требованиям.

## 4. Изготовление МФРП мм-диапазона и измерение их электрических параметров

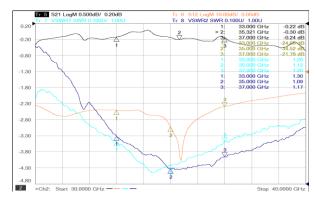
Проведённые расчёты и моделирование показали, что конструкция разработанных вентилей и Y-циркулятора должна состоять из платы из НЦВ, толщиной 0,25 мм и 0,2 мм для приборов Ка- и V-диапазонов частот соответственно, и магнитной системы, обеспечивающей необходимое внешнее поле подмагничивания (не менее 0,53 Тл).

Поэтому, для получения необходимой величины поля подмагничивания приборов, в их конструкцию было добавлено основание из магнитомягкого материала - технического железа ГОСТ 19904-90 (рисунок 4).

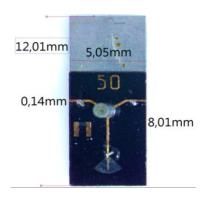


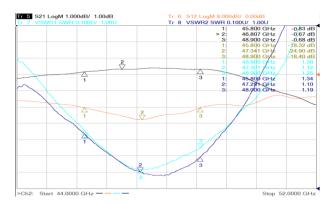

**Рисунок 4.** Распределение силовых линий в Y-циркуляторе Ка-диапазона с магнитной системой, состоящей из магнита и основания из магнитомягкого материала и зависимость поля подмагничивания от высоты магнита, диаметром 1,2 мм.

По разработанной в АО НПП «Исток» технологии были изготовлены МФРП мм-диапазона длин волн и проведено измерение их электрических характеристик.


На рисунках 6-8 представлены опытные образцы и электрические характеристики Y-циркулятора и вентилей миллиметрового диапазона длин волн.







**Рисунок 6.** Макет У-циркулятора Ка-диапазона частот и его электрические характеристики.





**Рисунок** 7. Макет ферритового вентиля Ка-диапазона частот и его электрические характеристики.





**Рисунок 8**. Макет ферритового вентиля V-диапазона частот и его электрические характеристики.

Как видно из рисунков 6-8, разработанные ферритовые приборы миллиметрового диапазона имеют электрические характеристики, близкие к полученным в ходе моделирования, что позволило существенно сократить время на доработку их конструкции.

#### 5. Заключение

В ходе проведенной работы были разработаны и изготовлены вентиль и Уциркулятор Ка-диапазона частот, а также макет вентиля V-диапазона частот. Электрические параметры разработанных МФРП приведены в таблице 3.

Таблица 3. Электрических параметры ФРП миллиметрового диапазона длин волн.

| Наименование<br>параметра, единица<br>измерения | Буквенное<br>обозначение | Ү-циркулятор<br>Ка-диапазона | Вентиль<br>Ка-диапазона | Вентиль<br>V-диапазона |
|-------------------------------------------------|--------------------------|------------------------------|-------------------------|------------------------|
| Диапазон рабочих частот, ГГц                    | $\Delta \mathrm{f}$      | 3639                         | 3337                    | 45,848,9               |
| Прямые потери, дБ                               | $\alpha_{np}$            | не более 0,7                 | не более 0,8            | Не более 0,9           |
| Развязка (обратные потери), дБ                  | $\alpha_{(pa3/o6p)}$     | не менее 22                  | не менее 20             | Не менее 18            |
| КСВНвх, вых.                                    | $K_{c_T} U$              | не более 1,3                 | не более 1,4            | Не более1,4            |
| Входная                                         |                          |                              |                         |                        |
| непрерывная                                     | Рвх. ср.                 | 0,1                          | 2                       | 0,1                    |
| мощность, Вт                                    |                          |                              |                         |                        |

Сравнение разработанных вентилей и Y-циркулятора с их отечественными и мировыми аналогами показало, что они превосходят их по комплексу электрических параметров.

Разработанные приборы обладают расширенной полосой рабочих частот и уменьшенными прямыми потерями, что позволяет эффективно применять их при разработке систем связи 5-го поколения и другой перспективной гражданской и военной СВЧ техники.

#### Список литературы

- 1. Semenov A.S. et al. Development of microstrip ferrite decoupling devices for mm-wave range microwave equipment // Journal of Physics: Conference Series, 2020
- Семенов А.С. и др. Микрополосковые ферритовые развязывающие приборы для СВЧ аппаратуры Ка-диапазона частот // Научно-технический сборник «Электронная техника». - 2020. - Серия 1. – выпуск 2 (545).
- 3. Семенов А.С. и др. Метрологическое обеспечение разработок ферритовых материалов для сантиметрового и миллиметрового диапазонов длин волн // Сборник статей VI Всероссийской конференции «Электроника и микроэлектроника СВЧ». СПб.: Изд-во СПбГЭТУ «ЛЭТИ», 2017 г., с. 27-31.
- 4. Вамберский М.В. и др. Конструирование ферритовых развязывающих приборов –М.: Радио и связь, 1982.
- 5. Семенов А.С. Микрополосковые ферритовые развязывающие приборы миллиметрового диапазона длин волн с улучшенными характеристиками: дисертация на соискание учёной степени кандидата техн. наук АО «НПП «Исток» им. Шокина», Фрязино, 2020 156 с.