УДК: 537.624; 537.632

Возникновение сверхразрешения в результате дифракции поверхностной спиновой волны на неоднородности круглой формы

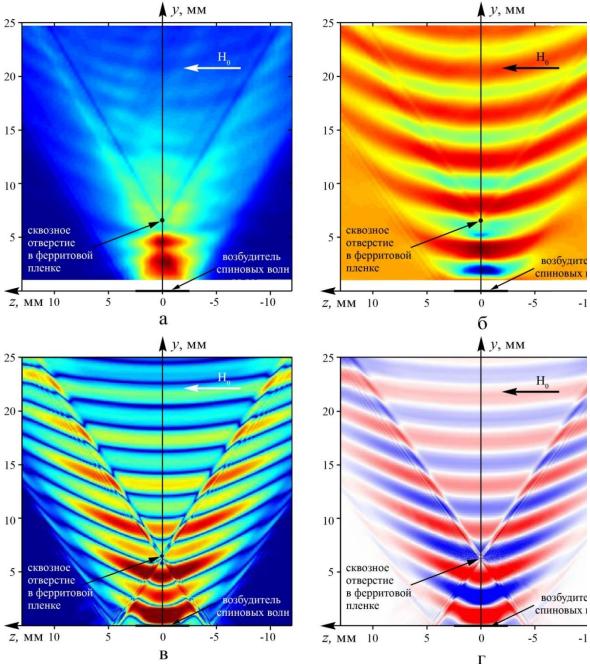
А.Б. Хутиева¹, А.В. Садовников¹, С.В. Герус², Э.Г. Локк², А.Ю. Анненков², А.В. Луговской²

Аннотация: выполнены эксперименты и расчеты по дифракции поверхностной спиновой волны на сквозном отверстии в касательно намагниченной ферритовой пленке для случая, когда волна возбуждается линейным преобразователем, параллельным внешнему однородному магнитному полю. Обнаружено, что при наличии направлений, в которых возможно сверхнаправленное распространение волны, в этих направлениях возникает новое физическое явление — сверхразрешение при наблюдении точечного объекта.

Ключевые слова: ферритовая плёнка, поверхностная спиновая волна, визуализированная дифракционная картина, сверхнаправленность, сверхразрешение

1. Введение

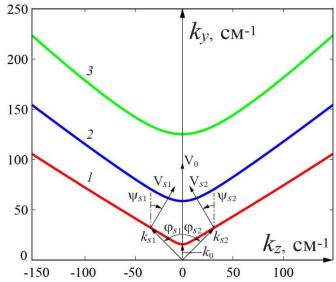
Недавно [1] была аналитически решена задача по исследованию дифракционной расходимости ограниченного по ширине луча (волнового пучка) спиновой волны (СВ) с неколлинеарной ориентацией волнового вектора \mathbf{k}_0 и вектора групповой скорости \mathbf{V}_0 . Было показано, что угловая ширина $\Delta \psi$ дифракционного луча, возбуждаемого линейным преобразователем либо щелью в непрозрачном экране, зависит не только от отношения длины CB λ_0 к длине возбудителя D (как в изотропных средах), но и от кривизны изочастотной зависимости СВ в точке, соответствующей волновому вектору. Было установлено, что для оценки угловой ширины лучей $\Delta \psi$ в анизотропных средах нельзя использовать критерий Рэлея, поскольку эта ширина может быть не только больше или меньше величины λ_0/D , но может быть даже равна нулю. Последующие эксперименты, показали, что величина $\Delta \psi$ для поверхностной и для обратной объёмной СВ в ферритовой пластине действительно может быть как больше, так и меньше величины λ_0/D , причём было реализовано сверхнаправленное распространение для обеих СВ [2, 3]. Эти работы заметно повысили интерес к исследованию дифракционных явлений в анизотропных средах. Ниже представлено исследование дифракции поверхностной СВ (ПСВ) на сквозном отверстии в ферритовой пленке. Расчеты выполнялись численными методами с помощью микромагнитного моделирования на основе уравнений Максвелла и уравнения Ландау-Лифшица с диссипативным членом в форме, предложенной Гильбертом [4], а эксперименты проводились методом зондирования [2], позволяющем визуализировать распределение амплитуды и фазы СВ в плоскости плёнки.

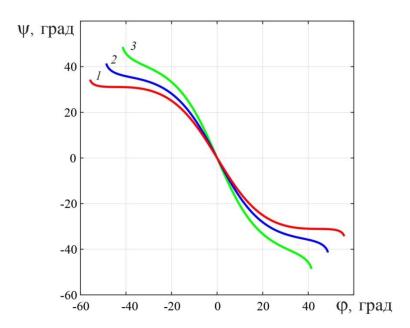

2. Экспериментальные и рассчитанные дифракционные картины спиновых волн в плоскости ферритовой пластине.

Ферритовая плёнка железоиттриевого граната толщиной s=17 мкм и намагниченностью насыщения $4\pi M_0=1750.5$ Гс была касательно намагничена внешним однородным магнитным полем величиной $H_0=485$ Э. С помощью лазера в ферритовой плёнке было сделано сквозное отверстие диаметром d=250 мкм.

¹Саратовский национальный исследовательский государственный университет им. Н.Г. Чернышевского

²Институт радиотехники и электроники им. В.А. Котельникова РАН (Фрязинский филиал)


Линейный возбуждающий преобразователь имел ширину 15 мкм и длину D=5 мм. Он был расположен на расстоянии 6.3 мм от отверстия и ориентирован параллельно внешнего магнитного поля \mathbf{H}_{0} . В экспериментах исследовались визуализированные картины, описывающие дифракцию ПСВ на отверстии в ферритовой частот OT 2970 МГц до плоскости пленки ДЛЯ 3100 МГц. Визуализированные картины для ПСВ с частотой $f_I = 2971$ М Γ ц представлены на рис. 1 (а и б), а соответствующие картины, рассчитанные на базе пакета программ MUMAX3, – на рис. 1 (в и г).


Рисунок 1. Экспериментальное (а, б) и рассчитанное (в, г) распределения амплитуды (а, в) и фазы (б, г) ПСВ, возбуждаемой линейным, параллельным вектору **H**₀ преобразователем, при её дифракции на сквозном отверстии в ферритовой пластине.

Как видно из рис. 1, рассчитанные и экспериментальные дифракционные картины, хорошо соответствуют друг другу. На представленных картинах можно увидеть ряд явлений, обусловленных дифракционной расходимостью волновых пучков СВ. Как

известно, дифракционная расходимость — это расширение волнового пучка из-за дифракции при его распространении в какой-либо среде или структуре. Очевидно, что о степени дифракционной расходимости можно судить по относительной угловой ширине дифракционного луча σ , которая в анизотропной среде зависит не только от отношения длины волны к размерам возбудителя, но и от направления, в котором переносится энергия волны. Поэтому, чтобы легче было понять наблюдаемые явления, рассчитаем дополнительно некоторые характеристики ПСВ. На рис. 2 показаны изочастотные зависимости ПСВ, на рис. 3 — зависимость угла ψ , под которым ориентирован вектор групповой скорости СВ \mathbf{V} , от угла ϕ , задающего ориентацию волнового вектора СВ \mathbf{k} , на рис. 4а и 46 — соответственно, зависимости относительной угловой ширины дифракционного луча σ от углов ϕ и ψ (расчёты выполнены в соответствии с теорией [1]).

Рисунок 2. Изочастотные зависимости ПСВ в касательно намагниченной ферритовой пластине для различных частот: 1 - 2971, 2 - 3099, 3 - 3256 МГц.

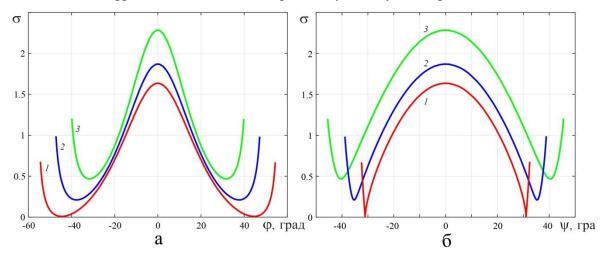


Рисунок 3. Зависимость угла $\psi(\phi)$ для ПСВ с частотой: 1 - 2971, 2 - 3099, 3 - 3256 МГц.

Напомним, что в соответствии с работой [1], по физическому смыслу величина σ является относительной угловой шириной дифракционного луча, равной отношению

абсолютной ширины луча $\Delta \psi$ к ширине аналогичного (при одинаковом отношении λ/D) луча в изотропной среде, и определяется формулой $\sigma = \Delta \psi/(\lambda/D)$.

Опишем кратко, как происходит распространение и дифракция волнового пучка (см. рис. 1). Очевидно, что показанные на рис. 1 картины можно считать интерференцией двух дифракционных картин: картины, возникающей из-за дифракции возбуждаемого волнового пучка по мере его распространения, и картины, возникающей в результате его дифракции на отверстии. Рассмотрим вначале особенности дифракции, связанные с первой из упомянутых картин.

Рисунок 4. Зависимости относительной угловой ширины дифракционного луча σ от углов ϕ (a) и ψ (б), рассчитанные для ПСВ с частотой: I - 2971, 2 - 3099, 3 - 3256 МГц.

Основная часть СВЧ-энергии, поступающая на преобразователь, расходуется на возбуждение волновых векторов ${\bf k}$, близких по ориентации к вектору ${\bf k_0}=15,66~{\rm cm}^{-1}$ на рис. 2 (углы ϕ , задающие ориентацию этих векторов, близки к нулю). Поскольку при $\phi \sim 0$ величина σ , определяющая дифракционную расходимость, принимает максимальные значения (см. рис. 4а) и поскольку длина СВ $\lambda(\phi \sim 0) \sim 4$ мм сравнима с длиной преобразователя D=5 мм, то вся эта энергия быстро расплывается и амплитуда СВ вдоль оси у заметно уменьшается уже в сечении y=5 мм (рис. 1а).

Если на рис. 1 из правого конца преобразователя провести луч под углом, равным углу отсечки групповой скорости $\psi_{\text{orc1}} = -34.3^{\circ}$, а из левого конца преобразователя – луч под углом $\psi_{\text{orc2}} = 34.3^{\circ}$, то построенные лучи ограничат область ферритовой пластины, по которой расплывается вся эта энергия.

Кроме того, при возбуждении CB оба конца линейного преобразователя работают как полу-точечные возбудители, также расходующие на возбуждение CB некоторую небольшую долю от всей CBЧ-энергии, поступающей на преобразователь.

Следует отметить, что для данных параметров ферритовой пластины, поля H_0 и частоты при ориентации волнового вектора \mathbf{k} под углами $\phi_{s1} = 44.6^{\circ}$ и $\phi_{s2} = -44.6^{\circ}$ возможно сверхнаправленное распространение CB в направлениях $\psi_{s1} = -31.1^{\circ}$ и $\psi_{s2} = 31.1^{\circ}$ соответственно, поскольку для данных ориентаций \mathbf{k} величина производной $\mathrm{d}\psi/\mathrm{d}\phi$ равна нулю и, следовательно, $\sigma = 0$ в соответствии с формулой (38) в [1] (см. рис. 3, рис. 4, а также рис. 2, где показаны углы ϕ_{s1} , ϕ_{s2} , ψ_{s1} , ψ_{s2} и соответствующие им векторы \mathbf{k} и \mathbf{V}). Этот факт существенно влияет на распространение возбуждающегося волнового пучка CB: из-за отсутствия дифракционной расходимости в направлении ψ_{s1} , исходящем из левого конца преобразователя и в направлении ψ_{s2} , исходящем из правого конца преобразователя, оказывается локализована определённая часть энергии волнового пучка (см. рис. 1а), что отмечалось и ранее в [6] для случая $\lambda \sim D$.

Рассмотрим теперь особенности дифракции волнового пучка на отверстии в

ферритовой пластине. Как видно из рис. 1а, тень от отверстия практически не возникает ни вдоль оси у, ни в направлениях, лежащих в секторе углов $-30^{\circ} < \psi < 30^{\circ}$ относительно отверстия. Это обусловлено тем, что, во-первых, в направлениях, близких к $\psi = \varphi = 0$, диаметр отверстия d = 250 мкм в 16 раз меньше длины CB $\lambda \sim 4$ мм и, во-вторых, этим направлениям соответствует наибольшая величина о, определяющая дифракционную расходимость (см. рис. 4). Однако при $\psi = \psi_{s1} = -31.1^{\circ}$ и $\psi = \psi_{s2} = 31.1^{\circ}$ ситуация меняется, поскольку *только при этих углах* зависимость $\sigma(\psi)$ становится равной нулю (рис. 4б), что означает отсутствие дифракционной расходимости волнового пучка. В результате, на дифракционной картине за отверстием в направлениях $\psi = \pm 31.1^{\circ}$ наблюдаются две отчетливые тени, похожие на отходящие от отверстия ровные «канавки» (см. рис. 1a), ширина которых равняется диаметру отверстия d и не меняется по мере распространения луча из-за отсутствия дифракционной расходимости в этом направлении (на рис. 1а протяженность этих «канавок» более 20 мм)! Отметим, что тень от отверстия на дифракционных картинах для СВ с другими частотами была не столь отчётливой и сильнее расширялась, из-за того, что с увеличением частоты СВ величина о не бывает равной нулю, а её минимальное значение возрастает (рис. 4). Поскольку $k_{s1} = k_{s2} = 45.37$ см⁻¹, что соответствует длине волны $\lambda_{s1,2} = 1385$ мкм, то можно констатировать следующее: в результате дифракции на отверстии диаметром d = 250 мкм ПСВ длиной $\lambda_{s1,2} = 1385$ мкм, превышающей размер отверстия в $\lambda_{s1,2}/d = 5.54$ раз, в направлениях $\psi_{s1,2} = \pm 31.1^{\circ}$, исходящих от отверстия, возникает отчётливая тень шириной d на расстоянии $\sim L=21$ мм от отверстия (и это не предел, судя по рис. 1a), причём расстояние L превышает диаметр отверстия в L/d = 84 раза (для сравнения, если провести оценки с использованием критерия разрешимости Рэлея для изотропных сред, то окажется, что в описанной выше ситуации тень от объекта наблюдаться не может).

3. Заключение

Таким образом, из-за наличия в ферритовой пластине направлений, в которых возможно сверхнаправленное распространение ПСВ, в этих направлениях возникает новое физическое явление — сверхразрешение, при котором угловое разрешение оказывается во много раз меньше, чем полученное на основе критерия разрешимости Рэлея.

Авторы благодарят за изготовление отверстия в ферритовой плёнке сотрудника АО НИИ "ФЕРРИТ-ДОМЕН" Иванова В.П.

Работа выполнена при частичной финансовой поддержке **Российского фонда** фундаментальных исследований (проект № 20-07-00356) и гранта президента РФ № МК-1870.2020.9.

Список литературы

- 1. Локк Э.Г. Угловая ширина луча при дифракции на щели волны с неколлинеарными групповой и фазовой скоростями // УФН 2012 τ .182 №12 с. 1327-1343.
- 2. Annenkov A.Yu., Gerus S.V., Lock E.H. Superdirectional beam of surface spin wave // EPL (EuroPhysics Letters) -2018 V. $123 N \cdot 4 P.44003 p1 44003 p7$.
- 3. Annenkov A.Yu., Gerus S.V., Lock E.H. Superdirected beam of the backward volume spin wave // EPJ Web of Conferences 2018 V. 185 P. 02006-1 02006-3.
- 4. Sadovnikov A. V., Odintsov S. A., Beginin E. N., Sheshukova S. E., Sharaevskii Yu. P. and Nikitov S. A. Toward nonlinear magnonics: Intensity-dependent spin-wave switching in insulating side-coupled magnetic stripes // Phys. Rev. B-2017-V.96-P.144428.
- 5. Анненков А.Ю., Герус С.В. Исследование распределения поверхностных магнитостатических волн путем сканирования поверхности ферритовой пластины // Радиотехника и электроника 2012 Т. 57 № 5 с. 572-577.
- 6. Вашковский А.В., Стальмахов В.С., Шараевский Ю.П. Магнитостатические волны в электронике сверхвысоких частот. / Саратов: Издательство Саратовского университета, 1993.