Магнитные фокусирующие системы реверсного типа с улучшенными массогабаритными характеристиками для вакуумных СВЧ приборов

А.А. Матвеев¹, С.П. Морев², Э.К. Муравьев¹, В.М. Саблин¹, И.С. Кузнецов¹, Д.А. Тереньтьев¹

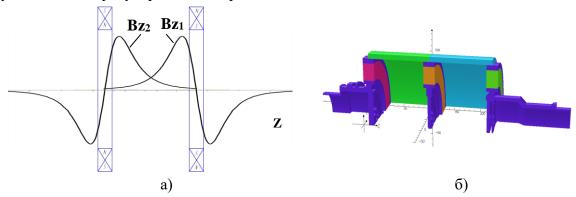
Аннотация. Представлены результаты анализа транспортировки электронного потока в магнитном поле реверсной фокусирующей системе многолучевого прибора. Рассмотрены различные возможности модификации магнитной системы, улучшающие ее массогабаритные характеристики и структуру электронного потока.

Ключевые слова. Электронный пучок, электронно-оптическая система (ЭОС), реверсная магнитная фокусирующая система (РМФС).

1. Введение

Мощные вакуумные многолучевые приборы СВЧ уже давно и прочно занимают широкую нишу усилителей СВЧ сигнала в различных устройствах, несмотря на успехи полупроводниковой СВЧ электроники. Значительную роль в повышении удельной мощности вакуумных СВЧ приборов играют вопросы, связанные с формированием и транспортировкой интенсивных электронных потоков в протяженных каналах пространств взаимодействия с электромагнитными волнами. Для транспортировки электронных потоков применяются магнитные фокусирующие системы различного типа, в частности, реверсные магнитные фокусирующие системы (РМФС), вес которых зачастую составляет значительную долю от веса всего прибора. Кроме того, использование в магнитных системах редкоземельных материалов повышает и себестоимость приборов. Разработка магнитных фокусирующих систем с улучшенными массогабаритными характеристиками может существенно улучшить и соответствующие характеристики приборов в целом.

В докладе представлены результаты проектирования реверсных систем различной конфигурации. Показано, что за счет модификации конструкции РМФС возможно обеспечить транспортировку электронного потока той же протяженности при существенно лучших массогабаритных характеристиках РМФС.


2. Постановка задачи

Обычная реверсная магнитная фокусирующая система состоит из радиально намагниченных колец с чередующимся направлением намагниченности и магнитопроводов [1], обеспечивающих требуемую структуру распределения магнитного поля вдоль оси системы (рисунок 1). Суммарное, близкое к однородному, распределение магнитного поля образуется сложением магнитных полей от соседних магнитов в ячейке РФС, а в областях электронной пушки и коллектора на концах РФС размещают мощные магнитопроводы (экраны) для подавления так называемых «обратных хвостов» распределения магнитного поля в этих областях. Это обеспечивает магнитное поле реверсной системы требуемой структуры, необходимое для транспортировки электронного пучка, однако сокращает протяженность области распределения магнитного поля по сравнению с системой, в которой экраны отсутствуют. В работе [2] показано, что «обратный хвост» распределения магнитного

¹AO «НПП «Торий»

²АО «НПП «Исток» им. Шокина»

поля может оказывать положительное действие в однолучевой ЭОС с фокусировкой МПФС, играя роль согласующего элемента для обеспечения транспортировки электронного потока с минимальными пульсациями. Для рассматриваемой реверсной системы подобный подход может уменьшить количество и размер магнитов в системе, улучшая массогабаритные характеристики РМФС. Кроме того, получающееся увеличение количества реверсов при заданной протяженности области транспортировки магнитным полем, приводит к уменьшению полупериодов реверсных ячеек и, в соответствии с работой [3], к возможному улучшению устойчивости фокусировки электронных потоков.

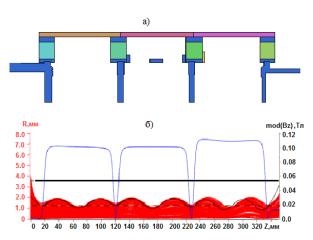
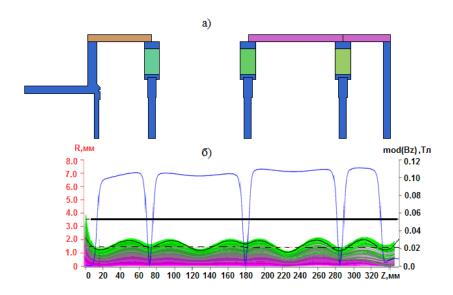


Рисунок 1. Распределение магнитного поля на оси радиально намагниченных магнитов (а) и эскиз реверсной магнитной фокусирующей системы для многолучевой ЭОС (б) Вес магнитной системы и магнитопроводов 28 кг.

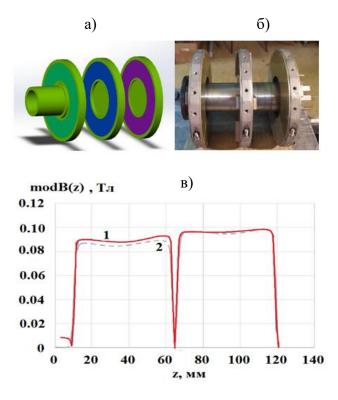
3. Результаты расчетов и их обсуждение


В качестве примера была рассмотрена магнитная реверсная фокусирующая система для однорядной многолучевой ЭОС с расположенными по азимуту парциальными пучками (рисунок 2a). Ускоряющее напряжение ЭОС было выбрано равным U=55000 В, микропервеанс пучка составлял величину P_{μ} =0,67 μ к $A/B^{3/2}$, диаметр пролетного канала $2R_{\kappa a H}$ =7.0 мм. Распределение магнитного поля и транспортировка парциального электронного потока в исходной конструкции магнитной системы, состоящей из четырех радиально намагниченных магнитов и магнитопроводов, представлено на рисунке 2б.

Общий вес магнитной системы с отверстиями для парциальных каналов составлял 30,7 кг

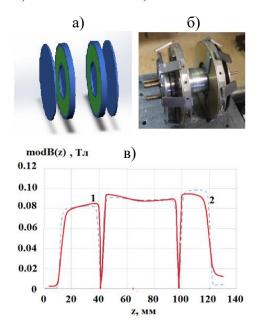
Рисунок 2. Эскиз исходной магнитной фокусирующей системы (а), распределение магнитного поля вдоль оси канала и парциальный электронный пучок в канале транспортировки (б). Пульсации пучка Δ =29%

Использование «обратных хвостов» распределения магнитного поля в концевых областях МФРС и магнитопроводов позволило получить на той же длине распределение магнитного поля, образованное тремя радиально намагниченными магнитами и магнитопроводами (рисунок 3).


Рисунок 3. Эскиз модифицированной магнитной фокусирующей системы (а), распределение магнитного поля вдоль оси канала и парциальный электронный пучок в канале транспортировки (б). Пульсации пучка Δ =28%

Из анализа результатов расчетов, представленных на рисунках 2,3 следует, что парциальный электронный пучок транспортируется четырьмя ячейками РМФС на расстояние порядка 340 мм с приемлемой амплитудой пульсаций. Отметим, что из-за малой компрессии пучка по площади влияние структуры магнитного поля на транспортировку парциального потока в пролетном канале может быть проведено на основе параксиального уравнения границы пучка [4]. Общий вес модифицированной магнитной системы с отверстиями для парциальных каналов составил 20.3кг. Снижение веса магнитной системы составило 10.42кг (33.9%).

4. Результаты экспериментов и их обсуждение


Для экспериментальной проверки методики построения РМФС с использованием «обратных хвостов» в распределении магнитного поля была рассмотрена малогабаритная фокусирующая система весом 4 кг, состоящая из трех радиально намагниченных колец с чередующимся направлением намагниченности и магнитопроводов (рис. 4), предназначенная для фокусировки парциального пучка с током 0,186 А при ускоряющем напряжении 9.0 кВ. Диаметр парциального канала и катода составляли 3.2 мм.

Коэффициент пульсации парциального электронного пучка в пролетном канале в двумерном приближении составил 48%.

Рисунок 4. Расчетная модель экспериментального макета магнитной фокусирующей системы (а), экспериментальный макет магнитной системы (б), экспериментальное (1) и расчетное (2) распределение магнитного поля вдоль оси парциального канала транспортировки (в).

После модернизации магнитной системы (рис.5) вес магнитной системы уменьшился до 2,9 кг, а пульсации электронного потока в пролетном канале снизились до 40%. Таким образом, за счет модернизации магнитной системы удалось снизить общую массу системы на 1,1 кг или же на 27,5%

Рисунок 5. Расчетная модель модифицированной магнитной фокусирующей системы (а), экспериментальный макет модифицированной магнитной системы (б), экспериментальное (1) и расчетное (2) распределение магнитного поля вдоль оси парциального канала транспортировки (в).

5. Заключение

Использование «обратных хвостов» в распределении магнитного поля в концевых ячейках реверсной магнитной фокусирующей системы многолучевого электровакуумного СВЧ прибора для фокусировки электронного потока позволяет существенно улучшить его массогабаритные характеристики. Помимо снижения веса магнитной системы уменьшается и себестоимость магнитной системы за счет экономии редкоземельных материалов, из которых изготавливаются магниты системы.

Список литературы

- 1. Царев В. А., Спиридонов Р. В. Магнитные фокусирующие системы электровакуумных микроволновых приборов О-типа. 2010.
- Darmaev A. et al. Development of an Electron-Optical System for Compact Ka-Band TWT //2020 International Conference on Actual Problems of Electron Devices Engineering (APEDE). – IEEE, 2020. – C. 103-105.
- 3. Дармаев А. Н. и др. Особенности проектирования электрооптической системы мощного вакуумного СВЧ прибора миллиметрового диапазона с реверсной магнитной системой//Современные технологии в науке и образовании—СТНО-2016. 2016. С. 151-154.
- 4. Алямовский И. В. Электронные пучки и электронные пушки. Сов. радио, 1966