УДК 621.385.632

ЛБВ Q-диапазона для наземных станций спутниковой связи

Б.А. Белявский, К.Л. Фокин, В.А. Алешин

ООО «ЭлТек-96»

Аннотация: Разработан, изготовлен и испытан экспериментальный образец пакетированной с магнитной периодической фокусирующей системой ЛБВ с выходной непрерывной мощностью 200 Вт в диапазоне частот (42,5 – 44,5) ГГц с замедляющей системой в виде цепочки связанных резонаторов.

Ключевые слова: Q-диапазон, ЛБВ, непрерывный режим, цепочка связанных резонаторов

Наземные станции связи со спутниками работают в диапазоне частот (42–45) ГГц, который называют Q-диапазоном. При уровнях излучаемой мощности (50–500) Вт в качестве выходных усилителей передатчиков станций в настоящее время используются ЛБВ. Современный технический уровень этих приборов характеризует ЛБВ 8925Н американской компании L-3 Electron Technologies [1]. При рабочем напряжении 14,5 кВ лампа обеспечивает выходную мощность 200 Вт в диапазоне частот (43,5–45,5) ГГц.

В лампе используется замедляющая система (3С) в виде спирали и трехступенчатая рекуперация энергии отработанного электронного пучка в коллекторе. Технический уровень ЛБВ 8925Н представляется очень высоким. До настоящего времени опыт нашей компании по электровакуумным усилителям мощности в рассматриваемом частотном диапазоне сводился к разработке и изготовлению в 2005 году двух образцов ЛБВ «Чихирь» для обеспечения приоритета России в установлении спортивной межконтинентальной связи на частоте 47,088 ГГц с использованием Луны в качестве пассивного ретранслятора. При рабочем напряжении 22,5 кВ лампа обеспечивала выходную импульсную мощность 250 Вт при скважности импульсов 2. В ЛБВ использовалась 3С на цепочке связанных резонаторов (ЦСР) и одноступенчатая рекуперация энергии отработанного электронного пучка.

Для связных ЛБВ важна равномерность амплитудно-частотной характеристики (АЧХ) в линейном режиме. Наиболее естественно это обеспечивается в лампах на основе спиральной ЗС, вдоль которой происходит непрерывное взаимодействие электронного пучка и электромагнитной волны [2]. В миллиметровом диапазоне создание спиральной ЛБВ с уровнем выходной мощности 200 Вт является сложной технической проблемой. В ЛБВ на ЦСР обеспечить указанный уровень мощности проще, однако из-за дискретного характера высокочастотного взаимодействия достижение приемлемой равномерности АЧХ затруднено. В работе [3] установлена связь между изрезанностью АЧХ ЛБВ на ЦСР и коэффициентом усиления секций ЗС, уровнями отражений и омическими потерями в них:

$$A = 20 \cdot \lg(1 + G \cdot R_1 \cdot R_2 \cdot L) / (1 - G \cdot R_1 \cdot R_2 \cdot L)$$
⁽¹⁾

Здесь А, [дБ], – отношение выходной мощности в соседних пиках АЧХ лампы, G, [раз], – коэффициент усиления секции 3С по напряжению, \mathbf{R}_1 и \mathbf{R}_2 – коэффициенты отражений по напряжению на концах секции 3С, \mathbf{L} – коэффициент потерь в секции 3С по напряжению. Из приведенной формулы следует, что для уменьшения изрезанности

АЧХ ЛБВ на ЦСР необходимо уменьшать коэффициенты G, R_1 и R_2 . Возможность и целесообразность уменьшения коэффициента усиления обеспечена наличием в настоящее время транзисторных усилителей Q-диапазона, способных сформировать достаточно мощный сигнал на входе ЛБВ. Отражения на концах секций ЗС можно минимизировать точным изготовлением элементов ЦСР с последующим соединением методом термодиффузионной пайки [2], а также тщательной отработкой конструкции сочленения секций ЗС с волноводами, внутривакуумного поглотителя и выводов (вводов) СВЧ энергии.

Приступая к разработке экспериментального образца ЛБВ Q-диапазона с рабочим названием «Чомга-2», мы ориентировались на напряжение пучка (22 – 24) кВ и коэффициент усиления в режиме насыщения примерно (22 – 24) дБ.

Область взаимодействия лампы спроектирована с помощью программного комплекса «Вега» [4]. Результаты расчета АЧХ лампы в режиме насыщения и в линейном режиме представлены на рисунках 1 и 2.

Рисунок 1. АЧХ при входной мощности $P_{Bx} = 0,8$ Вт, напряжении пучка U = 23 кВ, токе I = 0,15 А

Рисунок 2. АЧХ при Р_{вх}.= 0,2 Вт, U = 23 кВ, I = 0,15 А

Для уменьшения коэффициентов отражений \mathbf{R}_1 и \mathbf{R}_2 проведено тщательное согласование всех стыков высокочастотного тракта ЛБВ. Входной и выходной волноводы согласованы с секциями ЗС за счет уменьшения высоты волновода относительно стандартного значения и постепенного изменения углового размера щелей связи вдоль оси ЗС. Расчетная величина коэффициент стоячей волны напряжения (КСВН) стыка секций ЗС с входным и выходным волноводами в диапазоне частот (41 – 45) ГГц не превышает 1,1. Внутривакуумный поглотитель

сконструирован в виде шайб из керамики на основе нитрида алюминия и карбида кремния [5]. В указанной выше полосе частот расчетная величина КСВН стыка секций 3С с поглотителем не превышает 1,1. Согласование стандартного волновода с поперечным сечением 5,2×2,6 мм и прилегающих к 3С волноводов с уменьшенной высотой обеспечивается трехступенчатым трансформатором. КСВН изготовленных трансформаторов не превышает 1,05 в диапазоне частот (41,5-47,5) ГГц. Для герметичной изоляции вакуумного объема ЛБВ от атмосферы применены идентичные друг другу ввод и вывод СВЧ энергии баночного типа с передачей энергии на волне Е01 круглого волновода [6]. Материалом диэлектрического окна является пиролитический нитрид бора. КСВН изготовленных узлов не превышает 1,2 в диапазоне частот (42-46) ГГц. Электронная пушка лампы включает в свой состав импрегнированный катод, изолированный от него фокусирующий электрод и два анода, последовательно расположенных вдоль оси лампы. Первый, ближайший к катоду, анод используется для регулировки тока пучка. Второй анод, находящийся под потенциалом ЗС, одновременно является магнитным экраном. С целью сокращения количества вновь решаемых задач в ЛБВ применен коллектор с жидкостным одноступенчатой рекуперацией. Магнитная периодическая охлаждением и фокусирующая система (МПФС) лампы обеспечивает амплитудное значение 320 мТл. продольной составляющей магнитной индукции Фотография экспериментального образца ЛБВ «Чомга-2» представлена на рисунке 3. Основные параметры лампы приведены в таблице.

Рисунок 3. Экспериментальный образец ЛБВ «Чомга-2»

Г аблица. Основные па	араметры	экспериментальног	о образца.	ЛБВ	«Чомга-2»
------------------------------	----------	-------------------	------------	-----	-----------

Наименование параметра, единица измерения	Значение параметра		
Напряжение ЗС, кВ	23,1		
Напряжение коллектора, кВ	7,8		
Напряжение первого анода, кВ	12,0		
Ток катода, мА	150,0		
Ток ЗС, мА	0,5		
Габаритные размеры, мм	356×150×105		

Испытания экспериментального образца проходили в два этапа. На первом из них в импульсном режиме добились высокого (0,995 – 0,998) коэффициента токопрохождения электронного пучка через пролетный канал 3С. Управляющие импульсы амплитудой 1,5 кВ подавались на фокусирующий электрод. Затем испытания проводились в непрерывном режиме и включение электронного пучка обеспечивалось подачей напряжения на первый анод. Входная и выходная мощности ЛБВ измерялись термисторными ваттметрами с использованием калиброванных волноводных ответвителей. Электрические параметры экспериментального образца близки к расчетному прогнозу, но рабочий диапазон частот оказался менее широким, чем ожидалось. Расхождение обусловлено, на наш взгляд, недостаточно хорошим качеством золочения стенок резонаторов ЦСР. Этот недостаток в дальнейшем будет устранен. На рисунке 4 представлена зависимость выходной мощности лампы от входной мощности на одной из частот рабочего диапазона. Как и было задумано, коэффициент усиления в режиме насыщения составляет здесь примерно 22 дБ.

Рисунок 4. Амплитудная характеристика экспериментального образца на частоте 43 ГГц

На рисунке 5 приведена АЧХ лампы при уровне входной мощности $P_{BX} = 375 \text{ мBt}$, при которой коэффициент усиления уменьшается примерно на один децибел от своего постоянного значения в начале амплитудной характеристики (точка однодецибельной компрессии). Как видно, в диапазонах частот (42,7 – 43,2) ГГц и (43,8 – 44,3) ГГц отношение **A** амплитуд в соседних пиках АЧХ не превышает 0,4 дБ. В диапазоне частот (43,2 – 43,8) ГГц величина **A** доходит до 1,3 дБ. Это обусловлено ухудшением согласования в стыке секций ЗС с входным и выходным волноводами из-за непредвиденных дефектов, обнаруженных при сборке экспериментального образца.

Рисунок 5. АЧХ экспериментального образца в точке однодецибельной компрессии $P_{Bx} = 375$ мВт U = 23,1 кВ, I = 0,15 А

Выявленные недостатки будут, безусловно, устранены. Основной результат

работы состоит, на наш взгляд, в демонстрации практической возможности создания в настоящее время связных ЛБВ Q-диапазона с 3С в виде ЦСР. Применение ЦСР дает принципиальную возможность увеличения выходной мощности по сравнению со спиральными 3С, поэтому мы продолжим работу в выбранном направлении. С целью увеличения технического коэффициента полезного действия лампы планируется переход на многоступенчатую рекуперацию энергии отработанного электронного пучка.

Авторы благодарны Б.В. Прокофьеву и М.В. Ефремовой за проведение расчетов вывода СВЧ энергии и электронной пушки. Выражаем признательность О.Ю. Сивак участие в разработке конструкторской документации, С.Ф. Валикову, за Е.В. Парфеновой, И.В. Агафоновой В.А. Парнову И за изготовление экспериментального образца ЛБВ, руководству и сотрудникам АО «Плутон» за оказанную технологическую помощь.

Список литературы

- 1. C. Chong and W. Menninger Latest Advances in Hugh-Power Millimeter-Wave Helix TWTs. IEE Transactions on Plasma Science, vol. 28, No 6, June 2010, p. 1227 1238.
- 2. H. Limburg, J. Tammaru, J. Vaszari and J.Wilson Reducing the gain and phase variation in high power mmw TWTs. IEDM>88, p. 381 384.
- Е.А. Котюргин, А.Г. Веревкин, В.П. Посохов, Г.П. Бахарева, Н.Ф. Лямзина. Некоторые вопросы диффузионной пайки и диффузионной сварки в разработках и производстве ЭВП. // Электронная техника. Сер 1. «СВЧ-техника». – 2003. Вып. 1 (481), с. 14 – 18.
- 4. Мухин С.В. Программный комплекс «VEGA» для моделирования резонаторных замедляющих систем и процессов взаимодействия в ЛБВ, построенных на их основе. Журнал Радиоэлектроники (электронный журнал). 2002. № 12. http://jre.cplire.ru
- 5. Котков А.П., Кузьмичев А.Г., Пархоменко М.П., Каленов Д.С Диэлектрические параметры композиционной керамики на основе нитрида алюминия с поглощающей фазой из карбида кремния. Сборник тезисов докладов научно-технической конференции АО «НПП «Исток» им. Шокина» СВЧ электроника. 75 лет развития. 2018. 15 16 мая. Фрязино, с. 99 100.
- 6. Prokofiev B.V. Pillbox-Type Windows Transmitting Power in TM01 Mode of the circular Waveguide. Third Int. Vacuum Electronic Conf, IVEC 2002. April 23 – 25. Monterey, CA, USA, p. 224 – 225