Бирюков В.Н., Федоренко О.В. $\Phi \Gamma Y \Pi \ll \Pi O \ O \kappa m \pi \delta p b \gg 0$

Рассмотрение возможности применения векторных анализаторов цепей при настройке и сдаче антенн

Представлены методики расчета и расчет по техническим данным погрешностей измерения при измерении КСВН разными типами приборов

Ключевые слова: Векторные анализаторы цепей, погрешности измерения

На предприятии в соответствии с действующей конструкторской документацией КСВН антенн измеряется при помощи измерительной линии P1-17, P1-18. Метод позволяет производить проверку параметра только на фиксированных частотах и имеет высокую трудоемкость, особенно при настройке.

Допускается применение других средств измерения, обеспечивающих необходимую погрешность измерения.

Современными приборами для измерения КСВН являются, в том числе векторные анализаторы цепей, преимущественно импортного производства. В частности, на предприятии эксплуатируются векторные анализаторы цепей Rohde&Schwarz ZVB 4/8/14/20 и Agilent серии ENA.

В руководствах по эксплуатации на векторные анализаторы цепей нет прямой информации о погрешности измерения КСВН. Приводятся значения погрешности измерения модуля коэффициента отражения, в децибелах.

Целью работы является определение погрешности измерения КСВН для разных типов приборов в единых величинах измерения.

Сначала определим методику расчета погрешности измерения КСВН по данным погрешности измерения модуля коэффициента отражения.

Модуль коэффициента отражения определяется как

$$/S_{11}/=E/E_0$$
 (1)

где: Е – амплитуда электрического поля отраженной электромагнитной волны;

Е₀ – амплитуда электрического поля падающей электромагнитной волны.

Так как мощность электромагнитной волны P пропорциональна квадрату модуля электрического поля $P\sim /\ E\ /^2$, то из (1) величина модуля коэффициента отражения Sa, дБ вычисляется по формуле:

$$Sa = 20 \log (/ S_{11} /)$$
 (2)

Пусть измеренная величина модуля коэффициента отражения равна S_1 , а абсолютная погрешность измерения этой величины $\pm \Delta S$.

Тогда, величина модуля коэффициента отражения. с учетом погрешности измерения, запишется в виде:

$$S_2 = S_1 \pm \Delta S \tag{3}$$

с учетом формулы (2):

$$Sa_1 = 20 \log (S_1)$$
 и $Sa_2 = 20 \log (S_2)$ (4)

С учетом формул (3) и (4) погрешность измерения модуля коэффициента отражения запишется в виде:

 \pm $\Delta S = Sa_2$ - $Sa_1 = 20 \log$ (S_2) - $20 \log$ (S_1), или по свойству суммы (разности) логарифмов:

$$\pm \Delta a = 20 \log (S_2 / S_1) = 20 \log ((S_1 \pm \Delta S)/S_1) = 20 \log (1 + (\pm \Delta S)/S_1))$$
 (5)

Из формулы (5), по свойству логарифма, получаем:

$$(1 + + \Delta S)/S_{1} = 10^{\pm \Delta a/20}$$
 (6)

Из (6) получаем связь между погрешностью измерения модуля коэффициента отражения \pm Δa выраженную в дБ, с абсолютной погрешностью измерения модуля коэффициента отражения \pm ΔS :

$$\pm \Delta S = (10 \pm \Delta a/20 - 1) S_1 \tag{7}$$

Связь между модулем коэффициента отражения |S₁₁| и КСВН выражается формулой:

$$KCBH = (1+|S_{11}|)/(1-|S_{11}|)$$
(9)

Пусть измеренное значение КСВН, соответствующее модулю коэффициента отражения $|S_{11}|$

$$K_1 = (1+S_1)/(1-S_1)$$
 (10)

Значение КСВН с учетом погрешности измерений:

$$K_2 = (1+S_2)/(1-S_2)$$
 (11)

где $S_2 = S_1 + \Delta S$

Абсолютная погрешность $\Delta K = K_2 - K_1$,

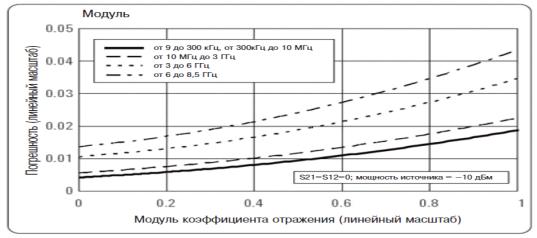
а относительная погрешность
$$\delta K = ((K_2 - K_1)/K_2) * 100\%$$
 (12)

Таким образом, получены основные формулы для вычисления относительной погрешности вычисления КСВН по данным значения модуля коэффициента отражения и погрешности его измерения, выраженных в абсолютных значениях или дБ.

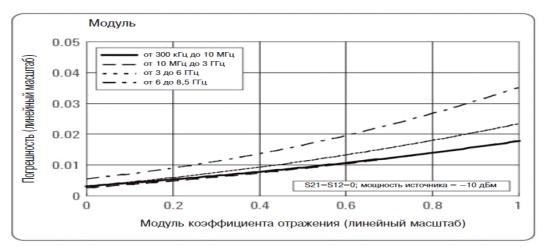
Следующим этапом по приведенным методам расчета погрешностей измерений КСВН и по техническим характеристикам векторных анализаторов цепей и измерительной линии P1-18 вычислены погрешности измерений КСВН для указанных приборов, для диапазона частот 4.0-4.5 ГГц и диапазона КСВН от 1.0 до 2.0.

Погрешности измерений модулей коэффициентов отражений векторных анализаторов цепей Rohde&Schwarz ZVB 4/8/14/20 приведены в таблице 1 [1].

Таблица 1


Пределы допускаемой абсолютной погрешности измерений модуля ко-	
эффициента отражения $ S_{11} $ и $ S_{22} $ при значениях $ S_{11} $ и $ S_{22} $ в	
диапазоне частот, дБ:	
для ZVB 4 и ZVB 8	
от 300 кГц до 8 ГГц	
- от 10 до 3 дБ	± 0,6
- 3 до минус 15 дБ	± 0,4
- от минус 15 до минус 25 дБ	± 1,0
 от минус 25 до минус 35 дБ 	± 3,0
для ZVB 14 и ZVB 20	-
от 10 до 50 МГц	
- от 3 до минус 15 дБ	± 1,0
- от минус 15 до минус 25 дБ	± 3,0
от 50 МГц до 20 ГГц	-
- от 10 до 3 дБ	± 0,6
- от 3 до минус 15 дБ	± 0,4
- от минус 15 до минус 25 дБ	± 1,0
- от минус 25 до минус 35 дБ	± 3,0

По описанным выше методам рассчитаны и сведены в таблицу 2 промежуточные и итоговые данные. Расчеты велись для приборов Rohde&Schwarz ZVB 4/8/14/20. Для случаев, когда данные различаются, приведены данные для Rohde&Schwarz ZVB 4/8 и через дробь для Rohde&Schwarz ZVB 14/20


Таблица 2

							т астинда 2
Модуль	Модуль	КСВН	Δа, дБ	ΔS	K ₁	K ₂	δΚ, %
Ѕа, дБ	S ₁₁						
-10	0,316	1,925	0,4	0,033	1,93	1,99	3,4
-15	0,178	1,433	0,4/1,0	0,033/0,086	1,43	1,46/1,50	1,75/4,6
-20	0,100	1,222	1,0	0,086	1,22	1,25	2,5
-25	0,056	1,119	1,0/3,0	0,086/0,292	1,12	1,14/1,17	1,39/4,77
-30	0,032	1,065	3,0	0,292	1,065	1,094	2,65
-35	0,018	1,036	3,0	0,292	1,036	1,052	1,48

Для векторного анализатора цепей Agilent серии ENA тип **E5071**С погрешности измерений модулей коэффициентов отражений приведены на графике Puc.1 [2]

Для векторного анализатора цепей Agilent серии ENA тип **E5071**C погрешности измерений модулей коэффициентов отражений приведены на графике Puc.2 [2]

Для требуемого диапазона частот и КСН рассчитаем и сгруппируем в таблицу рассчитанные данные.

Для векторного анализатора цепей Agilent серии ENA тип E5071C в таблицу 2

Таблица 2

S_{1}	ΔS	$S_1 + \Delta S$	K ₁	K ₂	δK , %
0.1	0.012	0.112	1.22	1.25	2.46
0.2	0.014	0.214	1.50	1.55	2.97
0.3	0.015	0.315	1.86	1.92	3.37
0.4	0.017	0.417	2.33	2.43	4.2

Для векторного анализатора цепей Agilent серии ENA тип E5071C в таблицу 3

Таблица 3

					1 0/0/11/12/07 0
S_{1}	∆ S	$S_1 + \Delta S$	K_{1}	K_{2}	$\delta K_{,\%}$
0.1	0.004	0.104	1.22	1.23	0.81
0.2	0.006	0.206	1.50	1.52	1.26
0.3	0.007	0.307	1.86	1.89	1.55
0.4	0.009	0.409	2.33	2.38	2.18

Значения погрешностей измерения КСВН для измерительных линий Р1-17, Р1-18 определяются из формул таблицы 5, пункта 6.1 приведенных в [3]:

$$\sigma_{1\kappa} = 0.7*(K_{CTU} - 1) * 100\%$$
 (13)

$$\sigma_{2\kappa} = 0.4* \delta U$$
, в процентах (14)

$$\sigma_{3\kappa} = (\eta/5) * \sqrt{(1 + (K_{H3M})^4)}, \text{ в процентах}$$
 (15)

максимальная погрешность измерения КСВН Δ К в процентах определяется по формулам п.6.7.1 , приведенных в [3]:

$$\Delta K = 1,7 * \sigma \in K$$
 (16)

$$\sigma_{\mathsf{E}_{\mathsf{K}}} = \sqrt{\Sigma_{\mathsf{i}=1}} \; (\sigma_{\mathsf{i}\mathsf{K}})^2 \tag{17}$$

с учетом данных, для линий Р1-17, Р1-18 рассчитаны и сведены в таблицу 4 значения погрешностей измерения КСВН.

Таблица 4

S_1	ΔS	K_{1}	$\sigma_{{}_{1k},\%}$	σ_{2k} , %	$\sigma_{\mathtt{a}k}$, %	$\sigma_{\in K,\%}$	ΔK , %
0.1	0.004	1.22			0.36	5.06	8.6
0.2	0.006	1.50			0.49	5.07	8.6
0.3	0.007	1.86	4.9	1.2	0.72	5.1	8.7
0.4	0.009	2.33			1.11	5.17	8.8

Таким образом, рассчитаны значения погрешностей измерения в рабочем диапазоне частот и значений КСВН для рассматриваемых приборов.

Данные сведены в сравнительную таблицу 5

Таблица 5

O	бщие данны	e	Тип прибора					
			ZVB	E5071C 85032F	E5071C 85092C	P1-18		
S ₁	$S_{\alpha}S_{\alpha}$,	K_{1}	δK , %	δK , %	δK , %	∆ K , %		
0.1	-20 дБ	1.22	2.5	2.46	0.81	8.6		
0.2	-14 дБ	1.50	1.98	2.97	1.26	8.6		
0.3	-10.5 дБ	1.86	3.15	3.37	1.55	8.7		
0.4	-8 дБ	2.33	4.6	4.20	2.18	8.8		

По результатам, приведенным в таблице определено, что рассматриваемые векторные анализаторы цепей имеют погрешности измерения КСВН в диапазонах частот и значений КСВН не хуже, чем у измерительных линий P1-17, P1-18.

Библиографический список

- 1. Анализаторы цепей векторные R&S ZVB 4/8/14/20. описание типа. Согласованно 32 ГНИИ МО РФ. 01.08.2008г.
- 2. 2- и 4-портовые ВЧ анализаторы цепей серии ENA компании Agilent. Технические данные. Agilent Technologies/
- 3. Линии измерительные на коаксиальный тракт сечением 7/3 мм Р1-17, Р1-18. Техническое описание, инструкция по эксплуатации и паспорт.