Оптимизация одноуровневой квантовой модели приповерхностных индуцированных слоев в СВЧ-приборах на основе системы металл-диэлектрик-полупроводник

Предлагается усовершенствование компактной модели, применяемой при расчетах распределения заряда и потенциала в МДП-структурах в режиме инверсии. Благодаря усовершенствованию, область использования модели может быть расширена на произвольные режимы, а также на случаи сильного легирования полупроводника, когда изначальный вариант становился неприменимым. Данное улучшение существенно для расчетов широкого круга СВЧ-приборов, функционирование которых основано на формировании индуцированных двумерных слоев заряда. Новые моменты связаны с введением дополнительного уровня на краю приповерхностной квантовой ямы и с рядом математических уточнений. Результаты проверены сопоставлением с опорными данными.

Ключевые слова: приповерхностное квантование, структура металл-диэлектрик-полупроводник, инверсия, обогащение, компактное моделирование.

При анализе характеристик целого ряда СВЧ-приборов, функционирование которых основано на появлении индуцированного инверсного или обогащенного слоя у границы раздела диэлектрик–полупроводник, возникает потребность в моделировании профилей заряда или потенциала в таких слоях и в структуре в целом. Пренебрежение квантовыми эффектами в таком случае приводит к неприемлемо большому занижению величины изгиба зон $q\phi_s$ в полупроводнике [1]. Надежным способом подобных расчетов является самосогласованное решение уравнений Шрёдингера и Пуассона [2]. На современных вычислительных мощностях, в случае единичного прибора, этот подход не представляется ресурсозатратным. Однако при моделировании интегральных микросхем такое решение необходимо для огромного количества приборов, и поэтому использование более простых алгоритмов может быть полезным для оптимизации вычислений в целом. Соответственно, разработка надежных компактных моделей остается актуальной задачей.

Для важной ситуации умеренно легированной структуры металл-диэлектрикполупроводник (МДП) в режиме инверсии неплохим приближением является введение одного эффективного уровня E_0 в квантовой яме, которому приписывается волновая функция $\psi_0 = (b^3/2)^{1/2} \cdot z \cdot \exp(-bz/2)$ с параметром *b*, определяемым путем минимизации энергии [1]. Такая модель, однако, неприменима при высоких концентрациях примеси, а также в режимах аккумуляции. Но с учетом простоты модели желательно расширить диапазон ее работоспособности и на подобные случаи.

В настоящей работе предлагается усовершенствование, заключающееся во введении дополнительного уровня E_c на краю ямы. На Рис. 1, для определенности, показан случай электронной ямы. Через *w* обозначена ширина области изгиба зон (для режима инверсии это просто ширина области обеднения). Трехмерная концентрация носителей на «уровне» E_c , не зависит от координаты, она определяется энергией Ферми E_F ямы, а конкретно для равновесия в подложке – плотностью доноров или акцепторов (величина N_D или N_A). При

выполнении вышеупомянутой процедуры минимизации энергии для нахождения значения b (см⁻¹), наряду с E_0 , учитывается наличие E_c ; кроме того, допускается ситуация, что E_0 в мелкой яме может и не существовать, тогда весь заряд носителей сосредоточен на E_c . В процессе нахождения b определяются концентрации N_{s0} и N_{sc} (см⁻²) на уровнях, а также w (см), после чего вычисляется весь профиль зон $q\phi(z)$.

Рис. 1. Зонная диаграмма МДП-структуры с индуцированным электронным слоем (*E*_c – дополнительный «уровень», вводимый в рассмотрение, наряду с основным уровнем ямы *E*₀).

Таким образом, в усовершенствованной модели заряд носителей (в условиях Рис. 1 – электронов) составляет $N_{\rm s} = N_{\rm s0} + N_{\rm sc}$, а полный заряд в полупроводнике будет

$$N_{stot} = N_s + wN_A (depl/inv); N_{stot} = N_s(acc)$$
(1)

для режимов обеднения/инверсии и аккумуляции, соответственно. Для простоты считаем, что при z < w атомы примеси полностью ионизованы в первом и не ионизованы во втором режиме. Трехмерная концентрация заряда (см⁻³) в области изгиба зон без учета вклада E_0 :

$$C_{con} = N_A + N_{sc} w^{-1} (depl/inv); C_{con} = N_{sc} w^{-1} (acc)$$
(2)

Оптимальная величина b^* параметра b находится из выражения:

$$\frac{d}{db} \left(E_{kin} + \frac{E_{in0}}{2} + E_{con} + E_{out} \right)_{b=b^*} = 0$$
(3)

где E_{kin} – кинетическая энергия электрона на уровне E_0 , E_{in0} – энергия межэлектронного взаимодействия на уровне E_0 , E_{con} – энергия взаимодействия электрона с уровня E_0 и заряда C_{con} , а E_{out} – энергия из-за отсутствия заряда C_{con} в диапазоне z > w при наличии там заряда $q|\psi_0(z)|^2 N_{\text{s0}}$ за счет электронов уровня E_0 . Выражения для энергий имеют вид:

$$E_{kin} = \frac{\hbar^2 b^2}{8m_z}; E_{con} = \frac{q^2 C_{con} w^2}{2\varepsilon_0 \varepsilon_s} \left[\frac{6}{bw} - \frac{12}{b^2 w^2} + \left(1 + \frac{6}{bw} + \frac{12}{b^2 w^2} \right) \exp(-bw) \right]$$
(4a)

$$E_{in0} = \frac{33q^2 N_{s0}}{16\varepsilon_0 \varepsilon_s b}; E_{out} = \frac{3q^2 C_{con}}{\varepsilon_0 \varepsilon_s} \left[\frac{2}{b^2} + \frac{w}{b} + \frac{w^2}{6} \right] \exp\left(-bw\right)$$
(4b)

Здесь m_z – масса электрона в направлении z, а ε_s – проницаемость полупроводника. В рамках старого подхода не было E_{out} , на месте C_{con} стояла N_A и отсутствовало слагаемое с «*exp*» в (4a), появляющееся при аккуратном интегрировании. После нахождения b^* имеем:

$$E_0 = \left(E_{kin} + E_{in0} + E_{con} \right)_{b=b^*}$$
(5)

а профиль зон в полупроводнике и энергия E_c вычисляются как ($z_w = \min(z, w)$):

$$q\varphi(z) = \frac{q^2 C_{con}}{\varepsilon_0 \varepsilon_s} \left(z_w w - \frac{z_w^2}{2} \right) + \frac{q^2 N_{s0}}{\varepsilon_0 \varepsilon_s} \left[\frac{3}{b^*} - \left(\frac{b^* z^2}{2} + 2z + \frac{3}{b^*} \right) \exp(-b^* z) \right]$$
(6)

$$E_c = q\varphi_s = \frac{q^2 C_{con} w^2}{2\varepsilon_0 \varepsilon_s} + \frac{3q^2 N_{s0}}{\varepsilon_0 \varepsilon_s b^*}$$
(7)

При этом концентрации на уровнях *E*₀ и *E*_c равняются

$$N_{s0} = \frac{\nu_{\perp} m_{\perp} kT}{\pi \hbar^2} \ln \left[\frac{\exp((E_F - E_0)/kT) + 1}{\exp((E_F - E_c)/kT) + 1} \right]; N_{sc} = n_0 w \cdot \frac{\ln \left[\exp((E_F - E_c)/kT) + 1 \right]}{\ln \left[\exp((E_{Fbulk} - E_c)/kT) + 1 \right]} (8)$$

Если оказалось $E_0 > E_c$, то считаем, что уровень E_0 не существует и что $N_{s0} = 0$. Здесь m_{\perp} – масса электрона в плоскости интерфейса, а v_{\perp} – кратность вырождения долин. kT – тепловая энергия, E_F и E_{Fbulk} – энергии Ферми в яме и в толще, Рис. 1. Через n_0 (см⁻³) обозначена концентрация электронов в толще, полагаемая равной n_i^2/N_A для обеднения-инверсии или N_D для обогащения; n_i – собственная концентрация. При $E_F = E_{Fbulk}$, имеем $N_{sc} = n_0 w$.

На Рис. 2а приведены зависимости относительной «глубины» основного уровня $E_0/q\phi_s$, ширины w, а также долей заряда в полупроводнике (Si) N_{s0}/N_{stot} , N_{sc}/N_{stot} на уровнях E_0 , E_c от сдвига ΔE_F энергий Ферми яма-толща для режима обеднения/инверсии. Все кривые построены для одного и того же полного заряда N_{stot} (10^{12} или 10^{13} см⁻²). Как можно было предвидеть, роль уровня E_c нарастает при почти разогнутых зонах, в самой левой части рисунка, где $\Delta E_F < 0$. При этом яма сужается, а уровень E_0 перестает существовать. В таких режимах квантовая модель в ее прежнем варианте переставала работать, особенно при повышении концентрации легирующей примеси, и, во избежание срыва счета, превышение E_0 над $q\phi_s$ приходилось игнорировать.

(соответственно, *N*_{s0}/*N*_{stot} и *N*_{sc}/*N*_{stot}). Аргументом выступает сдвиг энергий Ферми толща – яма.

b – Артефакт старого варианта простой модели, исключаемый при усовершенствовании.

Благодаря усовершенствованию модели, ситуация $E_0 > E_c$ (которая может возникнуть не только при $\Delta E_F < 0$, но иногда и при $\Delta E_F = 0$) не вызывает проблем: как пояснено после формул (8), в таком случае принимается, что все электроны располагаются на уровне E_c . Пример представлен на Рис. 2b, где по абсциссе отложено поле в диэлектрике (SiO₂); его можно преобразовать к полному заряду: $F_I = qN_{\text{stot}}/\epsilon_0\epsilon_I$, где $\epsilon_I = 3.9$. Отметим также, что некоторые математические уточнения (наличие экспоненциального члена в (4а), наличие знаменателя в выражении под логарифмом в первой из формул (8)) обеспечивают более плавный подход E_0 к краю ямы.

Параметры m_z , m_{\perp} , v_{\perp} для электронов были положены равными $0.432m_0$, $0.341m_0$, 6 (Si(100)) или $0.258m_0$, $0.358m_0$, 6 (Si(111)) и для дырок $0.260m_0$, $0.297m_0$, 3 (Si(100)) или $0.392m_0$, $0.330m_0$, 3 (Si(111)). Все результаты – для температуры t = 300 К.

Для проверки количественной состоятельности предложенной усовершенствованной модели проведена ее верификация посредством сравнения с результатами точных расчетов методом Шрёдингера-Пуассона, заимствованными из литературы. Пример такого сравнения представлен на Рис. 3. Показаны зависимости изгиба зон $q\phi_s$ в кремнии от поля $F_{\rm I}$. Для примеси доноров ($N_{\rm D}$) ситуация соответствует режиму аккумуляции, а для акцепторов ($N_{\rm A}$) – обеднению/инверсии. Качественно, поведение кривых понятно: при повышении $N_{\rm A}$ ($N_{\rm D}$) изгиб уменьшается. Количественно, неточность не превышает 0.04 эВ.

Модель согласуется со своей старой версией для ситуаций слабого легирования, достаточно глубоких и широких ($6/b \ll w$) ям: тогда заряд qN_{sc} заведомо мал, а вклад E_{out} и экспоненциальный член в (4a) могут быть опущены. Кроме того, поскольку аккумуляция и инверсия рассматриваются единообразно, при снижении N_A и N_D кривые $q\phi_s(F_I)$ на Рис. 3 для электронных индуцированных слоев сливаются. Аналогичные результаты получаются в случае дырочных приповерхностных индуцированных слоев.

Рис. 3. Изгибы зон в кремнии в МДП-структуре, рассчитанные по усовершенствованной модели. Для сравнения приведены данные точного расчета ($N_D = 10^{17}$ см⁻³ [3] и $N_A = 10^{18}$ см⁻³ [4]).

Косвенным преимуществом введения уровня на краю ямы, имитирующего состояния континуума, является еще возможность «дискретного» расчета туннельного тока через диэлектрик по формуле типа $j = qN_{s0}/\tau_0 \cdot \Theta(E_0) + qN_{sc}/\tau_c \cdot \Theta(E_c)$. Это проще традиционного интегрирования $(4\pi q \nu_\perp m_\perp h^{-3}](f_F - f_m)dE \int \Theta(E,E_\perp)dE_\perp$; f_F , $f_m - ф$ ункции Ферми ямы и металла, Θ – вероятность, E и E_\perp – полная и поперечная энергии электрона). Характеристические времена находятся как $\tau_0 = 24m_z(\hbar b^2)^{-1}$ и $\tau_c = 2w(kT/m_z)^{-1}$.

Подведем итоги. В работе был предложен и опробован вариант универсализации ранее известной модели инверсионного слоя в умеренно легированных МДП-структурах, позволяющий применять ее в любых режимах. Потенциальной сферой использования модели являются расчеты СВЧ приборов с индуцированными квантовыми слоями в ситуациях, когда применение самосогласованного решений уравнений Шрёдингера и Пуассона почему-либо неудобно.

Библиографический список

1. Андо Т., Фаулер А., Стерн Ф. Электронные свойства двумерных систем. М: Мир (1985).

2. Illarionov Yu.Yu., Vexler M.I., Karner M., Tyaginov S.E., Cervenka J., Grasser T. TCAD simulation of tunneling leakage current in CaF₂/Si(111) MIS structures. Curr. Appl. Phys., v. 15, No. 2, pp. 78-83 (2015).

3. Yang N., Henson W.K., Hauser J.R., Wortman J.J. Modeling study of ultrathin gate oxides using direct tunneling current and capacitance-voltage measurements in MOS devices. IEEE Trans. Electron Dev., v. ED-46, No. 7, pp. 1464-1471 (1999).

4. Suñe J., Olivo P., Riccò B. Quantum-mechanical modeling of accumulation layers in MOS structure. IEEE Trans. Electron Dev., v. ED-39, No. 7, pp. 1732-1739 (1992).