Иванова Л.Н.¹, Боровик И.А.¹, Кохнюк Д.Д.¹ Семененко В.Н.², Политико А.А.², Чистяев В.А.² ¹АО «ЦКБА»

 2 Институт теоретической и прикладной электродинамики РАН

Радиопоглощающее покрытие с высокой механической прочностью для антенной платформы

Разработан состав радиопоглощающего материала на основе эпоксидноэластомерного связующего с нанокристаллическим магнитным порошком и мелкодисперсным углеволокном. Приведены радиофизические измерения и результаты испытаний покрытия к внешним воздействующим факторам.

Ключевые слова: сверхширокополосная спиральная антенна, радиопоглощающее покрытие, нанокристаллические магнитные материалы, углеволокно.

В современных радиотехнических устройствах, в том числе и авиационного применения, широко используются конструкционные композиционные радиопоглощающие материалы (РПМ) широкого спектра функционального назначения: радиопоглощающие покрытия (РПП), защитные экраны, радиопоглощающие структуры (РПС), входящие в конструкцию различных радиотехнических устройств. Одним из основных элементов аппаратуры, разрабатываемой АО «ЦКБА», являются антенные устройства, где активно применяются РПП и РПС. Они представляют собой композиционные материалы, состоящие из полимерной матрицы и наполнителей. Расчет и составление рецептуры композиционного материала – это задача, целью которой является получение композиции, которая может быть достаточно легко переработана в изделие с необходимым комплексом свойств. Главная проблема заключается в том, чтобы разрабатываемые РПП и РПС обеспечивали как требуемые радиопоглощающие и эксплуатационные свойства, так и высокую технологичность. Состав композиции должен быть подобран таким образом, чтобы обеспечить прочность, жесткость, ударную вязкость, адгезию РПП к подложке. В качестве наполнителей обычно используют оксиды металлов, углеродные компоненты, ферриты, аморфные металлы и др. Порошковые материалы на основе магнитомягких нанокристаллических сплавов нашли применение в новых сверхширокополосных антеннах, работающих в непрерывном диапазоне ультравысоких (УВЧ), сверхвысоких (СВЧ) и крайне высоких (КВЧ) частот [1]. Кроме того, указанные порошковые материалы использованы в РПП для антенных платформ. Такие покрытия уменьшают взаимовлияние антенн, снижают уровень отражений от металлических поверхностей и изрезанность диаграмм направленности антенн и, как следствие, улучшают точностные характеристики изделий. С увеличением толщины РПП (выше 1...2 мм) возрастает вероятность образования трещин на поверхности РПП покрытия. Введение наполнителей в виде углеволокон уменьшает вероятность образования трещин в РПП, снижает степень его усадки при отверждении и делает поверхность сформованных деталей более гладкой [2]. Применение армирования как способа упрочнения радиопоглощающих покрытий описано в источниках [3-8]. Для армирования полимерной матрицы применяются стеклоткани, стекловолокна, углеткани, углеволокна. Полимерные композиционные материалы, армированные углеволокном в конструкциях летательных аппаратов, имеют следующие основные достоинства по сравнению с металлами:

- 1) снижение массы изделий до четырех раз;
- 2) высокие прочностные характеристики;
- 3) высокая износостойкость и устойчивость к воздействию агрессивных и абразивных сред;
 - 4) хорошая электро- и теплостойкость;
 - 5) снижение энергоёмкости при изготовлении деталей в пять раз;
 - 6) стабильность размеров деталей при изменении температуры.

Для проведения испытаний блоков были изготовлены образцы антенных платформ со ступенчатой и плоской поверхностями с РПП МАГ-3-У методом заливки поглощающего состава в формы. Радиопоглощающие свойства покрытия достигаются тем, что в поглощающем составе, состоящем из эпоксидно-эластомерного связующего, распределен порошок, представляющий собой частицы сплава Fe-Cu-Nb-Si-B с нанокристаллической структурой и размером от 1 до 50мкм с содержанием в частицах сплава нанокристаллов соединений α -(Fe,Si) объемной плотностью $(2,8\div2,9)\cdot10^{-5}$ 1/нм3, и мелкодисперсное углеволокно в определенных соотношениях в м.ч. (таблица 1).

Таблица 1. Рецептура РПП МАГ-3-У

N	Компоненты РПП	Массовые части
1	Эпокси-каучуковое связующее	100
2	Отвердитель	8
3	Магнитный порошок АМАГ-200	300
4	Углеволокно	2

Количество вводимого углеволокна определялось технологичностью изготовления поглощающего состава. Увеличение процентного содержания углеволокна в полимерной матрице приводило к сложности перемешивания и заполнения формы поглощающим составом. Экспериментально подобрано содержание углеволокна, составляющее 2 м.ч.

В итоге был изготовлен образец РПП толщиной 3,15 мм на алюминиевом основании. Общее время полимеризации образца при температуре 25±10°Ссоставило 24 часа.

При необходимости поглотители могут подвергаться механической обработке.

Проведение испытаний на стойкость к внешним воздействующим факторам.

Для оценки стойкости РПП к внешним воздействующим факторам были проведены следующие испытания блоков антенных платформ с покрытием МАГ-3-У и расположенными на них сверхширокополосными антеннами:

- проверка радиотехнических характеристик антенн в нормальных условиях на соответствие техническим требованиям;
- испытание на стойкость к воздействию циклического изменения температур при температуре минус 60° C в течение 2 ч, плюс 85° C в течение 2 ч (всего 10 циклов);
- испытание на устойчивость при воздействии случайной вибрации в диапазоне частот 5-2000 Гц со средним значением суммарного ускорения 12,5g;
- испытание на вибропрочность и виброустойчивость в диапазоне частот 5- 2000Γ ц с продолжительностью испытаний по 3 мин (вибропрочность) и по 9 ч (виброустойчивость) по осям x, y, z;
- испытание на воздействие повышенной влажности 96-100% при температуре плюс 35-55°C в течение 10 суток;

- испытание на воздействие повышенной температуры плюс 85°C в течение 2 ч, плюс 120°C в течение 3 мин;
- испытание на воздействие пониженной температуры минус 60°С в течение 2 ч. После каждого вида испытаний производилась проверка радиотехнических характеристик антенн. Результаты испытаний положительные.

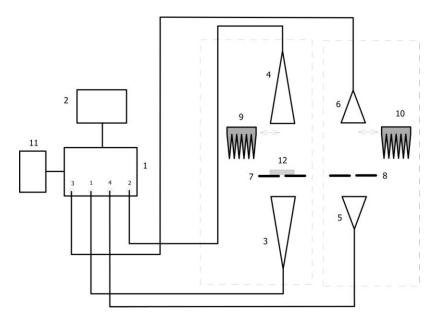
Проведение радиофизических измерений.

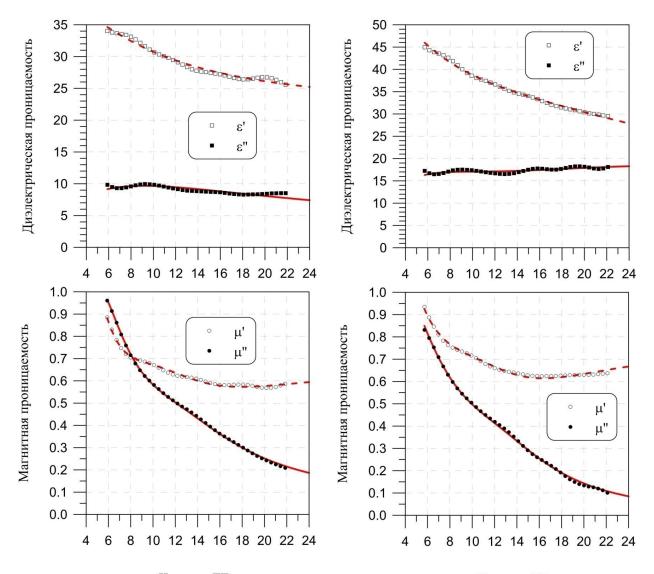
Коэффициенты отражения и прохождения электромагнитной волны, а также эффективная диэлектрическая и магнитная проницаемость образца покрытия МАГ-3-У измерялись в ИТПЭ РАН по аттестованной методике измерений МИ 29012159-30008-2010 при нормальном падении волны. Данная методика основана на измерении коэффициентов отражения $S_{11}(S_{44})$ и прохождения $S_{21}(S_{43})$ квазиплоской электромагнитной волны для образцов материалов с помощью широкополосных диафрагмированных линзовых рупорных антенн и векторного анализатора электрических цепей R&SZVA40 [9].

При проведении измерений исследуемый образец помещался в окно круглой металлической радиопоглощающей диафрагмы, расположенной в ближней зоне рупорной антенны П6-23М (П6-64) для минимизации вклада от процессов дифракции на краях образца и кромках рупорной антенны. В процессе измерения коэффициента отражения образца в зоне за диафрагмой устанавливалась согласованная нагрузка — объемный радиопоглощающий блок с низким коэффициентом отражения в рабочей полосе частот (не выше минус 50 дБ) для исключения дополнительных паразитных отражений от окружающего пространства. Для устранения влияния переотражений между измеряемым образцом и рупорной антенной использовалась временная селекция мешающих отражений (TimeDomain) с подавлением эффекта Гиббса. На рис. 1 представлена блоксхема измерительного стенда.

Измерения коэффициента отражения на металлической подложке и коэффициента прохождения образца при нормальном падении электромагнитной волны выполнялись с использованием диафрагмы диаметром 80 мм в двух поддиапазонах: 3-24 ГГц и 24-40 ГГц с последующим объединением частотных зависимостей. Измерения диэлектрической и магнитной проницаемости образца проводились в диапазоне частот от 6 до 22 ГГц.

С целью оценки электродинамической однородности и возможной анизотропии образца измерения проводились в двух положениях: при параллельной ориентации образца — большая сторона образца на диафрагме параллельна вектору электромагнитного поля H и перпендикулярной ориентации образца — большая сторона образца на диафрагме параллельна вектору электромагнитного поля E. Эти положения отличаются друг от друга поворотом на 90 град вокруг нормали к поверхности образца.




Рис. 1. Блок-схема измерительного стенда:

- 1 векторный анализатор электрических цепей R&SZVA40;
 - 2 персональный компьютер;
- 3, 4 широкополосная линзовая рупорная антенна П6-23М;
 - 5, 6 широкополосная линзовая рупорная антенна П6-64;
- 7, 8 металлические диафрагмы различного диаметра с нанесенным на них радиопоглощающим покрытием;
 - 9, 10 пирамидальный радиопоглощающий блок;
 - 11 рубидиевый стандарт частоты SRSFS725
 - 12 исследуемый образец РПМ

Анализ результатов измерений

Результаты измерений эффективной диэлектрической проницаемости и эффективной магнитной проницаемости для двух ориентаций образца покрытия МАГ-3-У приведены на рис. 2-3.

На графиках, изображенных на рис. 4 и 5, показаны результаты измерений частотных зависимостей коэффициента отражения на металлической подложке и коэффициента прохождения образца МАГ-3-У при перпендикулярной и параллельной ориентации образца в диапазоне от 3 до 40 $\Gamma\Gamma$ ц.

Частота, ГГц
Рис. 2. Частотная зависимость
диэлектрической и магнитной
проницаемости образца марки МАГ-3-У в
диапазоне от 6 до 22 ГГц при
параллельной ориентации образца

Частота, ГГц
Рис. 3. Частотная зависимость
диэлектрической и магнитной
проницаемости образца марки МАГ-3-У в
диапазоне от 6 до 22 ГГц при
перпендикулярной ориентации образца

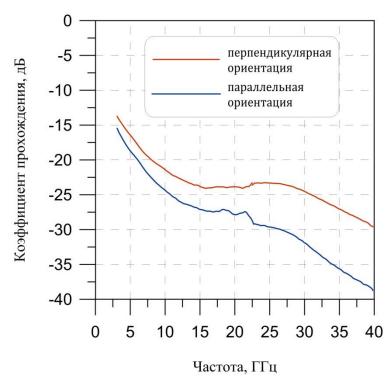


Рис. 4. Частотная зависимость коэффициента прохождения образца марки МАГ-3-У при перпендикулярной и параллельной ориентации в диапазоне от 3 до 40 ГГц

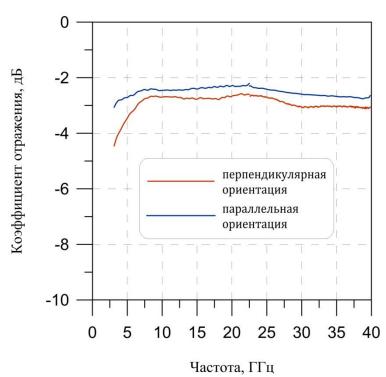


Рис. 5. Частотная зависимость коэффициента отражения образца марки МАГ-3-У при перпендикулярной и параллельной ориентации в диапазоне от 3 до 40 $\Gamma\Gamma$ ц

Сравнительные характеристики физико-механических и радиотехнических свойств РПП МАГ-3-У, разработанного АО «ЦКБА», и покрытия ПМ-10 разработки ООО «ГелиусГруп», приведены в табл.2.

Таблица 2. Сравнительные радиофизические и физико-механические свойства

покрытий марок ПМ-10 и МАГ-3-У

Показатели	РППмарки ПМ-10	РПП марки МАГ-3-У
Номинальный удельный вес, г/см ³	2,84	2,52
Номинальная толщина, мм	3,15	3,15
Прочность при разрыве, МПа, не менее	3,5	28,0
Действительная часть магнитной проницаемости на частоте 10 ГГц	1,2	1,2
Действительная часть диэлектрической проницаемости на частоте 10 ГГц	10,2	11,1

Как видно из данных, приведенных в табл. 2, предлагаемое однослойноеРПП для антенн МАГ-3-Уимеет наибольшую прочность и приемлемые радиотехнические характеристики.

Заключение

Решена задача изготовления РПП для антенных платформ, которое уменьшило взаимовлияние антенн, снизило уровень отражений от металлических поверхностей и, как следствие, улучшило точностные характеристики антенн, работающих в диапазоне сверхвысоких (СВЧ) и крайне высоких (КВЧ) частот.

Использование поглотителей электромагнитных волн, изготовленных в виде композиционного материала с нанокристаллическим порошком и мелкодисперсным углеволокном на основе эпоксидно-эластомерного связующего, в антенных платформах позволило:

- 1) изготовить прочное радиопоглощающее покрытие толщиной 3,15 мм;
- 2) сохранить монотонность формы диаграмм направленности антенн в области СВЧ и КВЧ;
 - 3) обеспечить стабильность радиотехнических характеристик антенн;
- 4) улучшить технологичность изготовления поглотителей для антенных платформ за счет применения прогрессивного метода заливки в форме.

Выводы

- 1. Использование углеволокна в качестве добавок к составу поглощающих покрытий целесообразно для упрочнения структуры покрытия (армирование) при толщине 2 мм и больше. Добавка углеволокна к радиопоглощающему составу снижает коэффициент отражения электромагнитных волн и расширяет полосу эффективного поглощения.
- 2. Радиопоглощающее покрытие, изготовленное толщиной 3,15 мм, армированное углеволокном, выдержало испытания на циклическое воздействие повышенных и пониженных температур.

Библиографический список

- 1.Патент № 2414029 Российская Федерация, МПК HO1Q 17/00. Поглотитель электромагнитных волн. Зайцева Н.В., Коробейников Г.В., Кохнюк Д.Д., Иванова Л.Н., Славин В.В., Кузнецов П.А., Маренников Н.В., Семененко В.Н.; заявитель и патентообладатель Открытое акционерное общество «Центральное конструкторское бюро автоматики». Заявка № 2010103171/07, заявл. 01.02.2010; опубл. 10.03.2011 Бюл. № 7.
 - 2. Справочник по композиционным материалам. М.: «Машиностроение», 1988, с. 53.
- 3. Молчанов В.И., Чукаловский П.А., Варшавский В.Я. . М.: «Углепластики», Химия, 1985.-207с.
 - 4. Сборник трудов. Конструкционные материалы на основе углерода. М. ; «Металлургия», № 14,15.- 1984.
 - 5. Каплунов И.Я. и др. Современные материалы и технологии.М.:«Электротехника», 1991, № 10.
- 6. Смирнова Н.Я. Исследование возможности применения углепластиков в антенно-волноводных устройствах. Вопросы специальной радиоэлектроники, 1987.- Выпуск 12.
- 7. Рыбин В.В., Кузнецов П.А и др. Антифрикционные углепластики в машиностроении. Вопросы материаловедения, 2006, № 1 (45).
- 8. Семененко В.Н., Чистяев В.А. Сверхширокополосная методика измерения электрофизических параметров листовых материалов в свободном пространстве // Материалы 20-й Международной крымской конференции «СВЧ-техника и телекоммуникационные технологии». Севастополь, Украина. 2010. С. 1091-1092.