Алексеенков В.И., Галдецкий А.В., Васильев В.И., Потапова Т.И. АО «НПП «Исток» им. Шокина»

Измерение параметров ферроэпоксидной керамики на СВЧ

Представлены результаты измерения ферроэпоксидной керамики в коаксиальном тракте и предложены формулы для относительной магнитной и диэлектрической проницаемости и тангенса магнитных потерь её на СВЧ. Выбран необходимый способ измерения и оптимизации измеренных параметров для получения достоверных результатов.

Ключевые слова: ферроэпоксидная керамика, диэлектрическая и магнитная проницаемость, измерения в коаксиальном тракте.

Введение.

Полное измерение 4-х параметров – диэлектрической и магнитной проницаемости, тангенса диэлектрических и магнитных потерь в диапазоне частот является достаточно сложной задачей, когда магнитные потери значительно больше диэлектрических. Известно множество работ по измерению параметров диэлектриков на СВЧ [1-4]. Отдельно диэлектрические или магнитные свойства можно измерять на одной частоте с помощью резонатора[2], [3]. Нами предложен метод измерения всех 4-х характеристик магнитодиэлектриков в диапазоне частот.

1. Экспериментальная установка.

Для измерения параметров ферроэпоксидной керамики использовался стенд на основе векторного анализатора цепей Agilent PNA-L N5230C (ВАЦ), калибровочного набора N типа 85054D и измерительного приспособления (ИП) – воздушного коаксиального кабеля сечением 7/3.04 мм рис. 1.

Рис. 1. Экспериментальная установка.

После калибровки анализатора от 0.2 до 10 ГГц в тракте 7/3,04 мм было проведено измерение S-параметров пустого ИП и была получена его эквивалентная схема. Измеряемый образец ферроэпоксида вставлен в ИП и проведено измерение его S-параметров.

2. Теоретическая модель устройства.

Для учета магнитных и электрических потерь использована модель на основе телеграфных уравнений. Погонное сопротивление R в металле ИП рассчитывалось с учетом скин-эффекта по формуле 1.

$$R = q * 4.18 * 10^{-8} * \sqrt{f} * \left(\frac{1}{a} + \frac{1}{b}\right)$$
(1)

Где а и b внешний и внутренний радиус коаксиальной линии в м, f частота в Гц а q - коэффициент, определяющий отношение удельного сопротивления металла к удельному сопротивлению меди.

Волновое сопротивление коаксиальной линии, учитывающее магнитные и диэлектрические потери определяется уравнением 2:

$$Z = \sqrt{\frac{R + i\omega L_0 * \mu (1 - itg\delta\mu)}{G + i\omega C_0 * \varepsilon (1 - itg\delta\varepsilon)}}$$
(2)

Здесь погонная индуктивность $L_0 = \frac{\mu_0}{2\pi} \ln \frac{b}{a}$

погонная ёмкость $C_0 = 2\pi\varepsilon_0 \ln \frac{b}{a}$ воздушного коаксиала;

μ₀- магнитная проницаемость вакуума; *ε*₀- диэлектрическая проницаемость вакуума;

μ -относительная магнитная проницаемость; tgδμ - тангенс угла магнитных потерь;

ε - относительная диэлектрическая проницаемость; tgδε - тангенс угла

диэлектрических потерь. Проводимость воздуха G=0.

Постоянная распространения

$$\gamma = \sqrt{\left(R + i\omega L_0 * \mu(1 - itg\delta\mu)\right) * (G + i\omega C_0 * \varepsilon(1 - itg\delta\varepsilon))}$$

Таким образом, мы можем рассчитать параметры матрицы рассеяния [1]:

$$S11 = \frac{(Z^2 - Z_0^2) * Sh(\gamma l)}{2 * Z * Z_0 * Ch(\gamma l) + (Z^2 + Z_0^2) * Sh(\gamma l)}$$
$$S21 = \frac{2Z * Z_0}{2 * Z * Z_0 * Ch(\gamma l) + (Z^2 + Z_0^2) * Sh(\gamma l)}$$

Где $Z_0 = 50$ Ом волновое сопротивление подводящего кабеля.

l –длина измеряемого образца. В нашем случае ввиду симметричности конструкции S11=S22 и S21=S12.

3. Метод измерения.

Основным недостатком существующих устройств для измерения параметров диэлектриков является их слабая приспособленность для измерения материалов с высокими магнитными и малыми диэлектрическими потерями, какими являются ферроэпоксидные материалы. При измерении S параметров таких материалов электрические и магнитные потери трудно отличимы друг от друга.

Поэтому предложено проводить измерения в двух раздельных условиях – 1. при помещении образца в область холостого хода на край разомкнутого коаксиала. Образец находится в максимуме электрического поля и минимуме магнитного поля. В этом случае можно найти диэлектрическую проницаемость и диэлектрические потери определяемые входным сопротивлением Z_{вх}.

$$Z_{\rm BX} = Z cth(\gamma l) \approx Z/\gamma l = \frac{1}{((G + i\omega C_0 * \varepsilon (1 - itg\delta \varepsilon)))l};$$

2. при помещении образца в область короткого замыкания на край короткозамкнутого коаксиала. В этом случае электрическое поле близко к нулю, а магнитное максимально.

Здесь проявляются магнитные свойства образца.

$$Z_{\rm BX} = Zth(\gamma l) \approx Z\gamma l = (R + i\omega L_0 * \mu(1 - itg\delta\mu))l;$$

Правильное определение всех параметров возможно только при одновременном учёте и оптимизации этих двух измерений.

Для достоверности указанных измерений необходимо, чтобы образец имел небольшую длину, т.к. при увеличении длины выигрыш предложенного метода нивелируется.

4. Аппроксимация результатов измерения.

На первом этапе оптимизировались расчётные параметры ферроэпоксида в каждой частотной точке до соответствия с измеренными параметрами в оснастках холостого хода и короткого замыкания. Таким образом определялся тип частотного изменения параметров.

На втором этапе для полученных параметров ферроэпоксида находились коэффициенты аппроксимирующих формул:

$$\mu = \frac{k}{f+k1} + k2 * f + k3 - \frac{k4}{f+k5}$$
$$tg\delta\mu = ktm1 * th(ktm2 * f) + ktm4 * (1 + th(ktm3 * (f - ktm5)))$$
$$\varepsilon = \frac{kep1}{f+kep2} + kep3$$

Значения коэффициентов приведены в таблице 1

k=3,016	ktm1=0,6517	kep1=0,4237
k1=0,758	ktm2=0,2282	kep2=0,03837
k2=-0,1768	ktm3=0,1212	kep3=9,928
k3=2,206	ktm4=2,762	
k4=0.7442	ktm5=12,51	
k5=37,47		

На третьем этапе формулы с соответствующими коэффициентами аппроксимации были заведены в программу и проводились расчеты по ним в диапазоне частот.

5. Результаты измерения.

Значения параметров ферроэпоксида в диапазоне частот от 0.2 ГГц до 10 ГГц представлены на рис. 2 -3.

Рис. 2. Относительная диэлектрическая и магнитная проницаемость ферроэпоксида.

Рис. 3. Тангенс магнитных потерь ферроэпоксида

На рис. 4 – 5 показано сравнение измеренных и построенных по выше указанным формулам S параметров для короткого замыкания S11 и холостого хода S22 на краю коаксиала для экспериментального образца длиной l=3.67мм.

Рис. 4 Расчетные и экспериментальные модуль и фаза коэффициента отражения от ферроэпоксида, расположенного у короткозамкнутого конца коаксиала.

Рис. 5 Экспериментальные и расчетные модуль и фаза коэффициента отражения от ферроэпоксида расположенного у открытого конца коаксиала.

Как видно из рис. 3 тангенс угла магнитных потерь имеет довольно большое значение от 0.2 до 2.2, что значительно превосходит тангенс угла диэлектрических потерь 0.028, уверенно измеренный в диапазоне от 0,2 до 1ГГц для образца длиной 3.67 мм. Поэтому в дальнейших расчетах tgδε считался постоянным и равным 0.028.

В связи с большим замедлением $n \approx \sqrt{\mu * \varepsilon} = 5$

длина образца для измерения до 10ГГц не должна превышать λ/60 или ≤0,5мм, что для хрупкого ферроэпоксида трудно выполнимо.

С другой стороны проведенные расчеты показывают незначительное влияние тангенса диэлектрических потерь на СВЧ характеристики на высоких частотах, поэтому принятое нами допущение его постоянства вполне закономерно.

Заключение.

Разработана оригинальная методика измерения параметров ферроэпоксида, позволяющая определить магнитные и диэлектрические свойства в диапазоне частот.

Получены формулы, аппроксимирующие частотные зависимости параметров ферроэпоксида в диапазоне частот от 0,2 до 10ГГц.

Библиографический список.

1. К. Гупта, Р. Гардж, Р. Чадха. «Машиное проектирование СВЧ устройств». Москва, «Радио и связь», 1987 г.

2. М. П. Пархоменко, Д. С. Каленов, Ю. Ф. Абакумов "Резонаторный метод для определения диэлектрических и магнитных параметров материалов и экспериментальная установка на его основе в миллиметровом диапазоне длин волн".

Электронная техника, сер. 1 СВЧ – Техника, вып. 2(517), 2013

3. Справочник по расчету и конструированию СВЧ устройств. Под редакцией В. И. Вольман. Москва «Радио и связь» 1982

4. Agilent Tecnologies Inc. Application notes 5989-2589EN. 2013 "Basics of measuring the dielectric properties of materials".