Д.А. Михеев¹, В.Л. Саввин¹, Ю.А. Пирогов¹, А.В. Коннов² ¹Московский государственный университет им. М.В. Ломоносова ²ФГУП «НПП «Торий»

3D моделирование распространения ленточного электронного потока с циклотронным вращением в аксиально-симметричных магнитных полях

Проведено 3D-моделирование динамики ленточного электронного потока в аксиальносимметричных магнитных полях в условиях циклотронного резонанса. Показано, что использование ленточных пучков позволяет существенно увеличить входную мощность микроволнового излучения в электровакуумных устройствах.

Ключевые слова: вакуумная электроника, ленточный электронный пучок, аксиально-симметричное магнитное поле, 3D-моделирование, циклотронный преобразователь энергии

В современной вакуумной электронике создание мощных устройств СВЧ играет ключевую роль. Дальнейшее увеличение мощности устройств, использующих электронные пучки круглого сечения, ограничено уровнем тока при заданном на катоде напряжении. В то же время, использование многолучевых приборов на основе пучков круглого сечения сопряжено с проблемой фокусировки пучков, которые находятся в разных начальных условиях, что сказывается не только на эффективности устройства, но и ограничивает его входную мощность. Также стоит отметить, что при переходе в субмиллиметровый и более коротковолновые диапазоны частот поперечные геометрические размеры как пучков, так и каналов, вдоль которых они распространяются, становятся на стенки устройства представляется практически неосуществимой задачей.

В связи с необходимостью увеличения уровня входной мощности устройств СВЧ в современной вакуумной электронике в последнее десятилетие получило развитие перспективное направление, связанное с применением ленточных электронных пучков в микроволновых усилителях и преобразователях волн [1]. Так, уровень входной мощности электровакуумных устройств СВЧ может быть существенно увеличен за счет ширины пучка, которая может превосходить его высоту в десятки раз. Таким образом, при той же плотности тока, что и для пучков круглого сечения получаем существенный прирост суммарного тока и, как следствие, входной мощности устройства. К сегодняшнему дню уже имеются изготовленные образцы устройств СВЧ на ленточных пучках. Особое внимание в этой связи нужно обратить на [2-3].

В настоящий момент на кафедре фотоники и физики микроволн физического факультета МГУ имени М.В. Ломоносова проводится разработка демонстрационного прототипа циклотронного преобразователя энергии (ЦПЭ) [4] на частоте = 2,45 ГГц с использованием ленточного электронного пучка. Ранее моделирование динамики электронного пучка круглого сечения в аксиально-симметричном реверсивном магнитном поле в ЦПЭ показало возможность прямого преобразования энергии микроволн в энергию постоянного электрического тока в присутствии тормозящего электрического поля [5].

263

Экспериментальные образцы устройства продемонстрировали высокую эффективность преобразования (до 70%) при входной мощности до 10 кВт на частоте 2,45 ГГц [4].

В рамках разработки прототипа создана 3D модель ленточного электронного потока, в которой рассматривается движение вращающегося ленточного электронного пучка в статическом продольном магнитном поле в слаборелятивистском приближении. Сопровождающее магнитное поле может быть постоянным, спадающим или реверсным и иметь произвольную эллиптическую поляризацию в поперечном сечении.

Уравнения движения электронов пучка в рамках модели:

$$\frac{d\vec{v}}{dt} = -\gamma\eta_0 \left\{ \left[\vec{v}\vec{B} \right] + \left(\gamma \vec{E} + \frac{\vec{v}(\vec{v}\vec{E})}{c^2} \right) \right\} \quad , \tag{1}$$

$$\frac{d\vec{r}}{dt} = \vec{v} , \qquad (2)$$

где \vec{r} — радиус-вектор частицы, \vec{v} — скорость частицы, t — текущее время, $\gamma = \sqrt{1 - \frac{|\vec{v}|^2}{c^2}}$, c — скорость света в вакууме, $\eta_0 = \frac{e}{m_0}$ — удельный заряд электрона, $\vec{B} = \{B_x(x,y,z), B_y(x,y,z), B_z(z)\}$ — магнитное поле в области, в частности, в параксиальном приближении $B_x \approx -\frac{x}{2} \frac{\partial B_z(z)}{\partial z}$, $B_y \approx -\frac{y}{2} \frac{\partial B_z(z)}{\partial z}$, электрическое поле $\vec{E} = \vec{E}_{pc} + \vec{E}_q$, где \vec{E}_{pc} электростатическое поле предколлектора, $\vec{E}_q = \{E_{qx}(x,y,z), E_{qy}(x,y,z), E_{qz}(x,y,z)\}$ — поле пространственного заряда.

Длина области взаимодействия L_0 может быть выражена в циклотронных длинах волн λ_c как $L_0 = N_c \cdot \lambda_c$, где $N_c \cdot -$ число циклотронных длин волн, а $\lambda_c = 2\pi v_{zo}/\omega_{c0}$.

Для моделирования стационарных (периодически повторяющихся во времени) процессов взаимодействия наиболее целесообразно (с точки зрения экономии вычислительных ресурсов) рассмотреть фрагмент протяженного в продольном направлении электронного потока с периодическими по оси z граничными условиями. Подобная модель пучка включает нечетное количество периодов инжекции пучка N_i , т.е. $N_i = 1, 3, 5,$ В этом случае параметры взаимодействия определяются по "средней" группе инжектированных электронов, принадлежащих ($N_i + 1$)/2 периоду. Все остальные частицы являются буферными. Обычно в моделях стационарного взаимодействия используют 1 – 5 периодов. Необходимо отметить, что в самой быстрой и экономичной однопериодной модели возникают наиболее значительные ошибки (до 100%) при вычислении полей пространственного заряда в силу их разрыва на границах периода.

Крупная частица в трехмерной модели пучка представляет собой бесконечную последовательность частиц (субчастиц) шарообразной формы с равномерно распределенной плотностью пространственного заряда, имеющих всегда одинаковые поперечные координаты (x,y) и расположенных на одной прямой, параллельной оси z, на расстоянии N_iL_i , где L_i – длина цуга инжектированных за период частиц (рис.1). В частности, $L_i = \lambda_c$. Субчастица, принадлежащая "среднему" периоду инжекции, является базовой по отношению к остальным субчастицам.

Рисунок 1. Фрагмент крупной частицы

Все субчастицы, входящие в одну крупную частицу, двигаются синхронно. Поле пространственного заряда, создаваемое одной *i*-.ой крупной частицей, записывается в виде суперпозиции полей составляющих ее субчастиц:

$$\vec{E}_{q_{i}} = \vec{E}_{qi0} - \frac{q}{4\pi\varepsilon_{0}} \sum_{k,k\neq 0} \frac{\vec{r}_{ik}}{|\vec{r}_{ik}|^{3}},$$
(3)

где \vec{r}_{ik} – радиус-вектор от *k*-ой субчастицы *i*-ой крупной частицы в точку наблюдения, q – заряд субчастицы, ε_0 – диэлектрическая проницаемость вакуума, *k* – индекс суммирования, причем |k| > 0, \vec{E}_{qi0} – поле, создаваемое базовой субчастицей в точке наблюдения.

$$\vec{E}_{qi0} = -\frac{q}{4\pi\varepsilon_0} \frac{\vec{r}_{i0}}{\left|\vec{r}_{i0}\right|^3}, \text{ при } |r_{i0}| > r_s,$$
(4)

$$\vec{E}_{qi0} = -\frac{q}{4\pi\varepsilon_0} \frac{\vec{r}_{i0}}{r_s^3}, \text{ при } |r_{i0}| \le r_s,$$
(5)

где *r*_s – радиус субчастицы.

Суммирование по k в (3) проводится от -∞ до +∞. В действительности ряд в (3) быстро сходится (тем быстрее, чем больше N_iL_i , поэтому в сумме (3) можно ограничиться несколькими членами со значениями $|k| \in (0,7)$.

Поперечное сечение ленточного пучка разбивается на $N_x N_y$ крупных частиц (рис. 2) с дискретностью по фазам влета N_z .

Рисунок 2. Дискретизация поперечного сечения инжектированного ленточного пучка

Таким образом, в области взаимодействия может находиться одновременно $N_i N_x N_y N_z$ крупных частиц.

Уравнения движения крупных частиц (1)-(2) интегрируются в координатах (*t*,*t*_{*im*}), где *t*_{*im*} – время влета *m*-ой крупной частицы *i*-го поперечного сечения (*m* – номер, характеризующий ее положение в поперечном сечении) с начальными условиями:

$$\begin{aligned} x_{im} &= X_{0m} - R_{c0} \sin(\varphi_0), \\ y_{im} &= Y_{0m} + R_{c0} \cos(\varphi_0), \\ z_{im} &= Z_{0i}, \\ v_{xim} &= -\omega_{co} R_{c0} \cos(\varphi_0), \\ v_{yim} &= -\omega_{co} R_{c0} \sin(\varphi_0), \\ v_{zim} &= v_{z0}, \end{aligned}$$
(6)

здесь φ_0 – начальная фаза поворота сечения пучка, X_{om} , Y_{om} , Z_{oi} – начальные координаты крупной частицы при $\varphi_0 = 0$ и $R_{c0} = 0$ – циклотронный радиус пучка, Vx_{im} , Vy_{im} , Vz_{im} – ее начальные скорости.

Рисунок 3. Поперечные сечения ленточного пучка в аксиально-симметричном магнитном поле в условиях циклотронного резонанса в зависимости от продольной координаты

С использованием описанной модели были получены результаты расчёта динамики ленточного электронного пучка в аксиально-симметричном реверсивном магнитном поле с продольной компонентой вида:

$$B_{z} = \frac{1}{2} B_{0} \left(1 + C_{0} + (1 - C_{0}) \cos\left(\frac{\pi Z}{L_{0}}\right) \right),$$
(7)

где B_0 – величина магнитного поля в начале области реверса, $C_0 = \frac{B_1}{B_0}$ – параметр

изменения магнитного поля (B_1 – величина магнитного поля в конце области реверса). На рисунке 3 в качестве примера представлены поперечные сечения ленточного пучка со следующими параметрами: размер сечения пучка – 1×10 мм², микропервеанс – p_{μ} =10 (ток пучка – 1,79 A, потенциал пучка – 2000 B), B_0 = 880 Tл, C_0 =0,1, R_{c0} = 2,44 мм, N_c = 5, количество периодов инжекции – N_i = 3. Пучок на выходе из реверсивной области не искажается и его форма сохраняется. Неустойчивости, связанные с пространственным зарядом практически не проявляются. Эффективность преобразования энергии при этом составила $\eta \approx 84$ %.

Таким образом, можно сделать вывод о целесообразности использования ленточных пучков в ЦПЭ. Предварительные расчёты показывают, что эффективность энергообмена в ЦПЭ с ленточным пучком остаётся на высоком уровне (до 85 %) при существенно большем уровне входной мощности микроволн (100 кВт) в сравнении с ранее представленными образцами ЦПЭ [4].

Библиографический список

1. Qiu J. X. Vacuum Tube Amplifiers / J. X. Qiu, B. Levush, J. Pasour, A. Katz, C.M. Armstrong, D.R. Whaley, J. Tucek, K. Kreischer, D. Gallagher // – IEEE Microwave Mag. – 2009. – Vol. 60. – №7. – pp. 38-51.

 Pasour J. Demonstration of a Multikilowatt, Solenoidally Focused Sheet Beam Amplifier at 94 GHz / J. Pasour, E. Wright, K. T. Nguyen, A. Balkcum, F. N. Wood, R. E. Myers, B. Levush // – IEEE Trans. Electron Devices. – 2014.
 – Vol. 61. – №6. – pp. 1630-1636.

3. Pershing D.E. Demonstration of a Wideband 10-kW Ka-Band Sheet Beam TWT Amplifier / D.E. Pershing, K.T. Nguyen, D.K. Abe, E. Wright, P. B. Larsen, J. Pasour, S.J. Cooke, A. Balkcum, F.N. Wood, R. E. Myers, B. Levush// – IEEE Trans. Electron Devices. – 2014. – Vol. $61. - N_{0}6. - pp. 1637-1642.$

4. Vanke V. A. High Power Converter of Microwaves into DC / V.A. Vanke, H. Matsumoto, N. Shinohara, A. Kita // – Journal of Radioelectronics. – 1999. – $N_{2}9$.

5. Пеклевский А.В., Саввин В.Л., Сухоруков А.П. Нелинейные поперечно-волновые взаимодействия в расходящихся аксиально-симметричных магнитных полях / А.В. Пеклевский, В.Л. Саввин, А.П. Сухоруков // – Известия РАН, Серия физическая. – 2008. – Т. 72. – №12. – с. 1785-1788.