Е.В.Забавская, Э.Ю.Седышев

Санкт-Петербургский государственный университет телекоммуникаций им. проф. М.А. Бонч-Бруевича

Синтез эллиптического фильтра низкой частоты в составе многослойной интегральной схемы СВЧ.

Представлены общие сведения по фильтрам в составе ОИС, произведены расчеты фильтра низкой частоты с эллиптической характеристикой 3 порядка, произведено макетирование фильтра СВЧ на диэлектрическом резонаторе в составе ОИС.

В настоящее время активно развиваются объемные многослойные интегральные схемы (ОИС) СВЧ, в первую очередь это связано с появлением новых технологических возможностей (LTCC, MEMC) и успехами в области компьютерного моделирования электро-динамических систем. ОИС СВЧ отличаются большей степенью интеграции элементов по сравнению с существующими планарными схемами. Первые объемные ИС СВЧ диапазона появились в конце прошлого века, они представляли собой результат этажирования планарных гибридно-интегральных схем. Многослойные структуры позволяют решить ряд проблем принципиального характера, которые открывают новые перспективы перед разработчиками радиоэлектронной аппаратуры.

Многослойная структура с размещенными внутри элементами может выступать в роли самостоятельного функционального устройства, при этом на каждый слой могут монтироваться и активные, и пассивные элементы СВЧ тракта. Некоторые элементы могут находиться в нескольких слоях одновременно. Это позволяет создавать малогабаритные многофункциональные модули, каждый из которых может работать в широком диапазоне частот. Так как между слоями ОИС подразумевается наличие экрана, то и вопрос об электродинамической развязке приобретает совсем иной смысл. Если в ГИС СВЧ электродинамическая развязка осуществлялась созданием планарной ячейки (электрические стенки), то в ОИС СВЧ необходимо наоборот создать связь между «этажами», то есть связать планарные конструкции между собой вертикально, при этом не разрушив экран (землю).

В однослойных гибридных ИС СВЧ основную часть площади подложки занимают пассивные компоненты. Одним из основных преимуществ многослойных ИС является очень высокая плотность компоновки пассивных компонентов за счет их размещения в нескольких слоях. Благодаря увеличению степени интеграции можно значительно уменьшить габариты СВЧ - устройства. На основе многослойных структур могут выполняться как отдельные составляющие приемо-передающего тракта телекоммуникационной системы, так и различные их комбинации, вплоть до реализации всего приемопередатчика, включая интегрированную антенну.

В настоящее время методик синтеза различных устройств в виде ОИС СВЧ еще нет, разработчики пытаются найти общее при синтезе самых разнообразных элементов СВЧ, начиная с самых простых. К устройствам СВЧ, где выигрыш по габаритам при многослойной реализации очевиден, можно отнести фильтры. Целью данной работы

является синтез эллиптического фильтра низких частот на диэлектрических резонаторах (ДР), а также конструирование системы возбуждения и связи диэлектрических резонаторов (ДР) в ОИС. Доказательством правильности предположений будет рабочая масштабная модель ФНЧ.

Рассмотрим простую реализацию фильтров на связанных резонаторах (Л.1), этот тип фильтров очень широко использовался в планарных ГИС. В конструкции фильтра есть закороченные и разомкнутые отрезки линий без навесных элементов, при этом нет принципиальной разницы в типе линий. Резонаторы могут быть как полосковые, щелевые, так и объемные диэлектрические. При переходе от планара к объему ожидается конструкция, приведенная на рисунке 1, здесь традиционная «торцевая» связь линий всего лишь меняется на «лицевую».

Рисунок 1. Объемный фильтр СВЧ на закороченных и разомкнутых резонаторах.

Приведенный вариант фильтра в виде ОИС имеет незначительный выигрыш по габаритам, здесь габаритный индекс по сравнению с планарной конструкцией уменьшается только за счет того, что часть резонаторов легко «заземляется», в планарной же конструкции потребовалось бы увеличение длины самих резонаторов. Несомненным достоинством этой конструкции фильтра является передача СВЧ сигнала с минимальными потерями из слоя в слой диэлектрика и уменьшение потерь на излучение. просматриваются основные особенности интеграции На этом примере фильтра планарных конструкций в ОИС, а именно – все планарные конструкции фильтров могут в составе ОИС СВЧ (с заменой микрополосковой линии на быть выполнены несимметричную полосковую).

Фильтры на диэлектрических резонаторах конструктивно представляют собой связанные ДР. Принципиальное отличие этого типа фильтров в том, что они имеют более высокую добротность по сравнению с фильтрами на резонаторах в виде отрезков линий, проигрывая в добротности волноводным. Габариты же фильтров на ДР меньше, чем у фильтров на отрезках линий передач и волноводных вместе взятых. Амплитудно-частотная характеристика (АЧХ) фильтра полностью определяется связью между ДР, а также способом их возбуждения. Конструктивно связь между резонаторами, как и во всех

других фильтрах, регулируется изменением расстояний между ДР, размерами отверстий в перегородках или размерами линии связи. Кроме того, она зависит от отношения размеров и ε_{∂} резонаторов. Эти связи также определяют ширину полосы пропускания фильтра. Особый интерес представляют малогабаритные конструкции фильтров на основе планарных (полосковых, щелевых, компланарных) линий с ДР. Используя последовательное включение ДР, можно реализовать любую полиномиальную АЧХ фильтра.

Рассчитаем фильтр низкой частоты классическим способом, выберем в качестве прототипа эллиптический фильтр C03-10-09 из (2), у этого фильтра 3 звена, одно из которых параллельный контур. Наш выбор детерминирован не только общностью схемы, но и некоторыми соображениями удобства интеграции ДР в схему. Обобщенная принципиальная схема низкочастотных фильтров Кауэра приведена на рисунке 2. Значения элементов прототипа приведены в таблице Т1. Очевидно, что с ростом количества элементов, конструкция фильтра принципиально не изменится.

Рисунок 2. Обобщенная схема эллиптического фильтра низкой частоты поряка n.

Таблица Т1.

Обозначение	C1	C2	C3	L2
Номинал	0.841	0.017	0.841	1.0826

Коэффициенты ренормировки рассчитаны по формулам (1) и (2) в предположении одинаковых нагрузок в 50 (Ом) справа и слева при граничной частоте 2.1 ГГц.

$$K_L = \frac{R}{2\pi f_c} \tag{1}$$

$$K_c = \frac{1}{2\pi f_c R} \tag{2}$$

$$K_{L} = \frac{50}{2 \cdot 3.14 \cdot 2.1 \cdot 10^{9}} = 3.79 \text{ (H}\Gamma\text{H})$$
$$K_{L} = \frac{1}{2 \cdot 3.14 \cdot 2.1 \cdot 10^{9} \cdot 50} = 1.52 \text{ (}\pi\Phi\text{)}$$

После ренормирования элементов, мы получаем фактические значения элементов фильтра (таблица Т2).

T	TO
Гаолина	12
гаолица	14.

	Обозначен	C1	C2	C3	L2
ие					
	Номинал	1.27 (пФ)	0.025 (пФ)	1.27 (пФ)	4.1(нГн)

Данный фильтр (n=3) обеспечивает небольшое затухание (порядка 5 дБ на ГГц), но путем увеличения порядка легко может стать высокоизбирательным.

Рисунок 3.Принципиальная схема фильтра низкой частоты с эллиптической характеристикой 3 порядка.

Интеграция диэлектрических резонаторов цилиндрического типа в случае предлагаемого фильтра производится установкой ДР в цилиндрическое отверстие диэлектрика подложки слоя. Связь цилиндрических резонаторов осуществляется через основания, соединены которые гальванически друг с другом посредством несимметричной полосковой линий. Высота данного слоя ОИС берется равной высоте ДР. В нашем простейшем случае модель фильтра с соединительными линиями и конструктивными емкостями на землю представлена на рисунке 4. Здесь соединительные и конструктивные емкости рассчитаны по стандартным методикам, при линии масштабном макетировании (расчет номиналов макета) все номиналы элементов сохраняются.

Рисунок 4. Общий вид эллиптического фильтра в составе ОИС.

В предлагаемом конструктиве (макете) легко рассчитать волновое сопротивление подводящей питающей линии, она выбрана несимметричной. Её волновое сопротивление можно оценить, воспользовавшись расчетами для МПЛ (формула 3), так как НПЛ представима в виде параллельного соединения двух МПЛ. На рисунке 5 представлена топология слоёв (подложка прозрачна, видны оба слоя), в основе которой питающая линия и емкость, также указано место установки резонатора. Диаметр отверстия под диэлектрический резонатор рассчитывается по стандартным инженерным методикам для ГИС СВЧ. В реальном фильтре резонаторы могут быть выполнены, например, из лейкосапфира, а в нашем случае они сделаны из искусственного диэлектрика (парафин с добавками) с заданной диэлектрической проницаемостью.

Рисунок 5. Топология слоёв с местом для установки диэлектрического резонатора.

$$z_{w} = \frac{75}{\sqrt{\varepsilon_{r}}} \ln(\frac{6D}{0.75B + d} + \frac{0.075 \cdot B}{D})$$
(3)

Расчет емкости произведен по стандартной формуле для планарных емкостей ГИС. Формулы для расчета геометрии цилиндрического резонатора при выбранном значении m (рабочая мода) имеют следующий вид:

$$D_{\mathcal{A}P} \cong m\lambda_0 \frac{\sqrt{3}}{\pi\sqrt{\varepsilon}}$$

$$H_{\mathcal{A}P} \cong \frac{\lambda_0}{\sqrt{\varepsilon}}$$
(4)

Где $D_{дP}$, H_{dP} - диаметр и высота диска, соответственно; λ_0 - длина волны в свободном пространстве; ε - диэлектрическая проницаемость материала, из которого выполнен резонатор.

Очень важен правильный выбор оптимальной геометрии цилиндрического экрана, при которой высокодобротные моды ДР не разрушаются, взаимодействуя с металлическими стенками экрана:

$$D_{_{\mathcal{H}P}} \cong D_{\mathcal{A}P} + 2\lambda_0$$

$$H_{_{\mathcal{H}P}} \cong 2\lambda_0$$
(5)

Здесь $D_{_{3\kappa p}}$, $H_{_{3\kappa p}}$ - диаметр и высота экрана. Проверка расчета емкости и волнового сопротивления НПЛ была проведена в программе RFSimm, также там был произведен расчет амплитудно-частотной характеристики фильтра, которая приведена на рисунке 6.

Рисунок 6. Расчетная АЧХ фильтра (синяя линия - S11, красная линия - S12), логарифмическая развертка от 0 до 12 ГГц=(Х), линейная от 0 до -50 дБ=(Y).

Ниже приведена масштабная модель фильтра на ДР в составе ОИС. Результаты макетирования показывают, что основная технологическая сложность для данной конструкции – это подвод питания (5). В центре макета установлен резонатор из искусственного диэлектрика с диэлектрической проницаемостью ε =10.

Рисунок 7. Реализация НПЛ, резонатора и емкости в макете ОИС.

Компьютерное моделирование в электродинамических пакетах подтвердило правильность наших предположений. Как видно из сопоставления эпюров конструкции и фотографии слоёв трудности в центровки диэлектрического резонатора и возбуждающих линий отсутствуют, то есть конструкция не критична к погрешностям технологии, а значит легко может быть реализована в многослойных ОИС.

Рисунок 8. Электродинамическая модель фильтра и её многослойная реализация с резонатором из искусственного диэлектрика.

Эллиптические фильтры на цилиндрических дисковых резонаторах могут быть реализованы в составе многослойных интегральных схем СВЧ диапазона. Целесообразным является использование разновидностей цилиндрических резонаторов – дисковых, так как их высота может быть всегда выбрана соразмерно высоте слоя ОИС, что упрощает конструкцию фильтра и позволяет интегрировать фильтр любого порядка в трёхслойную ОИС.

Библиографический список.

- 1. В.И. Гвоздев, Е.И. Нефедов «Объемные интегральные схемы СВЧ»-М: Наука. Главная редакция физико математической литературы, 1985 256 с., ил.
- 2. Ханзел Г.Е. «Справочник по расчету фильтров» США, 1969. Пер. с англ., под ред. А.Е. Знаменского. М., «Сов. Радио», 1974 288 с., ил.
- 3. Ю.М.Безбородов, Т.Н. Нарытник, В.Б. Федоров. «Фильтры СВЧ на диэлектрических резонаторах» К. :Техника, 1989. 184с.
- 4. И.А.Соколов «Применение диэлектрических резонаторов в генераторах сантиметрового и миллиметрового диапазонов»
- Э.Ю.Седышев, Ю.И.Зиленькова «Фильтр на диэлектрических резонаторах в объемном интегральном исполнении» - СПбГУТ: Материалы международной научно-технической и научнометодической конференции «Актуальные проблемы инфотелекоммуникаций в науке и образовании»», №64. – С.528.(Стр. 382 -384).